冷枭总裁的赔心交易:第三十四章 二次函数 复习教案

来源:百度文库 编辑:偶看新闻 时间:2024/04/29 14:08:19

第三十四章 二次函数

教学设计思想:

这堂课为章节复习课,教师可以先从总体知识结构入手,引导学生逐步回顾所学的知识,要知道本章主要需要掌握的是如何利用二次函数及其表示方法、二次函数的图像及性质解决实际问题,即二次函数的应用。

教学目标:

1.知识与技能

初步认识二次函数;

掌握二次函数的表达式,体会二次函数的意义;

会用数表、图像和表达式三种表示方法来表示二次函数,并会相互转化;

会画二次函数,能利用二次函数求一元二次方程的近似解;

利用二次函数的图像和性质解决相关实际问题,灵活应用二次函数。

2.过程与方法

通过利用二次函数的图像解决问题,体会数形结合的数学方法;

在学习探索的过程中逐步体会和认识二次函数。

3.情感、态度与价值观

体会从特殊函数到一般函数的过渡,注意找函数之间的联系和区别;

树立主动参与积极探索尝试、猜想和发现的精神;

注意运用数形结合的思想,改变过去只利用数式,而忽略图形的思想。

教学重点:二次函数的图像和性质。

教学难点:二次函数y= 的图像及性质;二次函数的应用。

教学方法:讨论法、引导式。

教学安排:1课时。

教学媒体:幻灯片。

教学过程:

Ⅰ.知识复习

师:这堂课是这章的总结课,下面我们来看这章整体知识框架图:(幻灯片)

观看这章的知识整体框架,思考下面的问题:

1.你能用二次函数的知识解决哪些问题?

2.日常生活中,你在什么地方见到过二次函数的图像抛物线的样子?

3.你知道二次函数与一元二次方程的关系吗?你能解决什么问题?

同学们,想想你们学习本章的收获是__________。

同学们相互讨论,然后师生互动共同探讨上面的问题。

Ⅱ.典型例题

例1:某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图2-1,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?

要求:(1)请提供四条信息;(2)不必求函数的解析式。

解:(1)2月份每千克销售价是3.5元;(2)2月份每千克销售价是0.5元;(3)1月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9与、4月与10月、3月与11月,2月与12月的销售价相同。

(注:此题答案不唯一,以上答案仅供参考,若有其他答案,只要是根据图象得出的信息,并且叙述正确即可)

讨论:

生:对于这类问题,我常感到无从下手。

师:要重点看一下横轴与纵轴分别是哪一个变量,然后再看一下它的数据分别是多少。

例2:(北京石景山)已知:等边 中, 是关于 的方程 的两个实数根,若 分别是 上的点,且 ,设 关于 的函数关系式,并求出 的最小值。

解: 是等边三角形,

不合题意,舍去,

,即 的重点时, 有最小值6。

讨论:

生:这个题目包含的内容较多,我感到难度很大。

师:本题涉及到等边三角形的性质,解直角三角形。二次函数的有关内容,是一道综合性题目。

生:对于这样的题目如何入手呢?

师:要认真分析题目,明确每一条件的用处。

例3:某校初三年级的一场篮球比赛中,如图2-2,队员甲正在投篮,已知球出手时离地面高 ,与篮球中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m

(1)建立如图2-3的平面直角坐标系,问此球能否准确投中?

(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?           

解:(1)

根据题意:球出手点、最高点和蓝圈的坐标分别为

设二次函数的解析式

代入 两点坐标为

点坐标代入解析式;左=右;所以一定能投中。

(2)将 代入解析式: 盖帽能获得成功。

讨论:

生:此球能否准确投中,与二次函数的知识有何联系,我不大清楚。

师:篮球运行的轨迹为抛物线,蓝圈可以看成一个点,所以此球能否准确投中的问题,实际上就是看一下该点在不在抛物线上即可。

例4:如图2-4,一位篮球运动员跳起投篮,球沿抛物线 运行,然后准确落入篮框内,已知篮框的中心离地面的距离为3.05米

(1)球在空中运行的最大高度为多少米?

(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?

解:(1) 抛物线 的顶点坐标为(0,3.5)。

∴球在空中运行的最大高度为3.5米

(2)在 中,当 时,

时,

故运动员距离篮框中心水平距离为 米。

讨论:

生:我对运动员距离篮框中心水平距离有点迷惑。

师:运动员距离篮框中心水平距离,就是过蓝框向地面做垂线,垂足与人的站立点的距离。

例5:已知抛物线

(1)证明抛物线顶点一定在直线 上。

(2)若抛物线与 轴交于 两点,当 ,且 时,求抛物线的解析式。

(3)若(2)中所求抛物线顶点为 ,与 轴交点在原点上方,抛物线的对称轴与 轴脚于点 ,直线 轴交于点 ,点 为抛物线对称轴上一动点,过点 ,垂足 在线段 上,试问:是否存在点 ,使 若存在,求出点 的坐标;若不存在,请说明理由。

解:(1)

∴顶点坐标为( )∴顶点在直线

(2)∵抛物线与 轴交于 两点,∴

,解得

时, (与 矛盾,舍去),

时,

(3)∵抛物线与 轴交点在原点的上方,∴

∵直线 轴交于点 ∴设 ,则

解得

时,

时,

讨论:

生:抛物线顶点在直线 上如何证明?

师:抛物线的顶点坐标可以求出吧?

生:只要用公式即可。

师:将抛物线的顶点坐标代入直线的解析式,如果适合直线的解析式,则点在直线 上;否则,点不在直线 上。

Ⅲ.课堂小结

我们这堂课主要需要掌握的是如何利用二次函数及其表示方法、二次函数的图像及性质解决实际问题,即二次函数的应用。

板书设计:

小结与复习

一、知识回顾          例2    例3

 

二、典型例题          例4    例5

例1                  三、总结