office2007迅雷下载:Digital Signal Processing 数字信号处理

来源:百度文库 编辑:偶看新闻 时间:2024/05/03 06:53:31




DSP是什么[转帖]
DSP是什么

| 数字信号处理 | 数字信号处理器 | DSP处理器与通用处理器的比较 |

Digital Signal Processing 数字信号处理

作为一个案例研究,我们来考虑数字领域里最通常的功能:滤波。简单地说,滤波就是对信号进行处理,以改善其特性。例如,滤波可以从信号里清除噪声或静电干扰,从而改善其信噪比。为什么要用微处理器,而不是模拟器件来对信号做滤波呢?我们来看看其优越性: 模拟滤波器(或者更一般地说,模拟电路)的性能要取决于温度等环境因素。而数字滤波器则基本上不受环境的影响。 数字滤波易于在非常小的宽容度内进行复制,因为其性能并不取决于性能已偏离正常值的器件的组合。 一个模拟滤波器一旦制造出来,其特性(例如通带频率范围)是不容易改变的。使用微处理器来实现数字滤波器,就可以通过对其重新编程来改变滤波的特性。

信号处理方式的比较

比较因素 模拟方式 数字方式 修改设计的灵活性 修改硬件设计,或调整硬件参数 改变软件设置 精度 元器件精度 A/D的位数和计算机字长,算法 可靠性和可重复性 受环境温度、湿度、噪声、 不受这些因素的影响 电磁场等的干扰和影响大大规模集成 尽管已有一些模拟集成电路, 但品种较少、集成度不高、价格较高DSP器件体积小、功能强、功耗小、一致性好、使用方便、性能/价格比高 实时性 除开电路引入的延时外,处理是实时的 由计算机的处理速度决定 高频信号的处理 可以处理包括微波毫米波乃至光波信号 按照奈准则的要求,受S/H、A/D和 处理速度的限制

Digital Signal Processor 数字信号处理器

微处理器(Microprocessor)的分类 通用处理器(GPP) 采用冯.诺依曼结构,程序和数据的存储空间合二而一 8-bit Apple(6502),NEC PC-8000(Z80) 8086/286/386/486/Pentium/Pentium II/ Pentium III PowerPc 64-bit CPU(SUN Sparc,DEC Alpha, HP) CISC 复杂指令计算机, RISC 精简指令计算机 采取各种方法提高计算速度,提高时钟频率,高速总线,多级Cashe,协处理器等 Single Chip Computer/ Micro Controller Unit(MCU) 除开通用CPU所具有的ALU和CU,还有存储器(RAM/ROM)寄存器,时钟,计数器,定时器,串/并口,有的还有A/D,D/A INTEL MCS/48/51/96(98) MOTOROLA HCS05/011 DSP 采用哈佛结构,程序和数据分开存储 采用一系列措施保证数字信号的处理速度,如对FFT的专门优化 MCU与DSP的简单比较 MCU DSP 低档 高档 低档 高档 指令周期(ns) 600 40 50 5 乘加时间(ns) 1900 80 50 5 US$/MIPS 1.5 0.5 0.15 0.1

DSP处理器与通用处理器的比较考虑一个数字信号处理的实例,比如有限冲击响应滤波器(FIR)。用数学语言来说,FIR滤波器是做一系列的点积。取一个输入量和一个序数向量,在系数和输入样本的滑动窗口间作乘法,然后将所有的乘积加起来,形成一个输出样本。

类似的运算在数字信号处理过程中大量地重复发生,使得为此设计的器件必须提供专门的支持,促成了了DSP器件与通用处理器(GPP)的分流:

1 对密集的乘法运算的支持

GPP不是设计来做密集乘法任务的,即使是一些现代的GPP,也要求多个指令周期来做一次乘法。而DSP处理器使用专门的硬件来实现单周期乘法。DSP处理器还增加了累加器寄存器来处理多个乘积的和。累加器寄存器通常比其他寄存器宽,增加称为结果bits的额外bits来避免溢出。同时,为了充分体现专门的乘法-累加硬件的好处,几乎所有的DSP的指令集都包含有显式的MAC指令。

2 存储器结构

传统上,GPP使用冯.诺依曼存储器结构。这种结构中,只有一个存储器空间通过一组总线(一个地址总线和一个数据总线)连接到处理器核。通常,做一次乘法会发生4次存储器访问,用掉至少四个指令周期。

大多数DSP采用了哈佛结构,将存储器空间划分成两个,分别存储程序和数据。它们有两组总线连接到处理器核,允许同时对它们进行访问。这种安排将处理器存贮器的带宽加倍,更重要的是同时为处理器核提供数据与指令。在这种布局下,DSP得以实现单周期的MAC指令。

还有一个问题,即现在典型的高性能GPP实际上已包含两个片内高速缓存,一个是数据,一个是指令,它们直接连接到处理器核,以加快运行时的访问速度。从物理上说,这种片内的双存储器和总线的结构几乎与哈佛结构的一样了。然而从逻辑上说,两者还是有重要的区别。

GPP使用控制逻辑来决定哪些数据和指令字存储在片内的高速缓存里,其程序员并不加以指定(也可能根本不知道)。与此相反,DSP使用多个片内存储器和多组总线来保证每个指令周期内存储器的多次访问。在使用DSP时,程序员要明确地控制哪些数据和指令要存储在片内存储器中。程序员在写程序时,必须保证处理器能够有效地使用其双总线。

此外,DSP处理器几乎都不具备数据高速缓存。这是因为DSP的典型数据是数据流。也就是说,DSP处理器对每个数据样本做计算后,就丢弃了,几乎不再重复使用。

3 零开销循环

如果了解到DSP算法的一个共同的特点,即大多数的处理时间是花在执行较小的循环上,也就容易理解,为什么大多数的DSP都有专门的硬件,用于零开销循环。所谓零开销循环是指处理器在执行循环时,不用花时间去检查循环计数器的值、条件转移到循环的顶部、将循环计数器减1。

与此相反,GPP的循环使用软件来实现。某些高性能的GPP使用转移预报硬件,几乎达到与硬件支持的零开销循环同样的效果。

4 定点计算

大多数DSP使用定点计算,而不是使用浮点。虽然DSP的应用必须十分注意数字的精确,用浮点来做应该容易的多,但是对DSP来说,廉价也是非常重要的。定点机器比起相应的浮点机器来要便宜(而且更快)。为了不使用浮点机器而又保证数字的准确,DSP处理器在指令集和硬件方面都支持饱和计算、舍入和移位。

5 专门的寻址方式

DSP处理器往往都支持专门的寻址模式,它们对通常的信号处理操作和算法是很有用的。例如,模块(循环)寻址(对实现数字滤波器延时线很有用)、位倒序寻址(对FFT很有用)。这些非常专门的寻址模式在GPP中是不常使用的,只有用软件来实现。

6 执行时间的预测

大多数的DSP应用(如蜂窝电话和调制解调器)都是严格的实时应用,所有的处理必须在指定的时间内完成。这就要求程序员准确地确定每个样本需要多少处理时间,或者,至少要知道,在最坏的情况下,需要多少时间。

如果打算用低成本的GPP去完成实时信号处理的任务,执行时间的预测大概不会成为什么问题,应为低成本GPP具有相对直接的结构,比较容易预测执行时间。然而,大多数实时DSP应用所要求的处理能力是低成本GPP所不能提供的。

这时候,DSP对高性能GPP的优势在于,即便是使用了高速缓存的DSP,哪些指令会放进去也是由程序员(而不是处理器)来决定的,因此很容易判断指令是从高速缓存还是从存储器中读取。DSP一般不使用动态特性,如转移预测和推理执行等。因此,由一段给定的代码来预测所要求的执行时间是完全直截了当的。从而使程序员得以确定芯片的性能限制。

7 定点DSP指令集

定点DSP指令集是按两个目标来设计的:

使处理器能够在每个指令周期内完成多个操作,从而提高每个指令周期的计算效率。 将存贮DSP程序的存储器空间减到最小(由于存储器对整个系统的成本影响甚大,该问题在对成本敏感的DSP应用中尤为重要)。 为了实现这些目标,DSP处理器的指令集通常都允许程序员在一个指令内说明若干个并行的操作。例如,在一条指令包含了MAC操作,即同时的一个或两个数据移动。在典型的例子里,一条指令就包含了计算FIR滤波器的一节所需要的所有操作。这种高效率付出的代价是,其指令集既不直观,也不容易使用(与GPP的指令集相比)。

GPP的程序通常并不在意处理器的指令集是否容易使用,因为他们一般使用象C或C++等高级语言。而对于DSP的程序员来说,不幸的是主要的DSP应用程序都是用汇编语言写的(至少部分是汇编语言优化的)。这里有两个理由:首先,大多数广泛使用的高级语言,例如C,并不适合于描述典型的DSP算法。其次,DSP结构的复杂性,如多存储器空间、多总线、不规则的指令集、高度专门化的硬件等,使得难于为其编写高效率的编译器。

即便用编译器将C源代码编译成为DSP的汇编代码,优化的任务仍然很重。典型的DSP应用都具有大量计算的要求,并有严格的开销限制,使得程序的优化必不可少(至少是对程序的最关键部分)。因此,考虑选用DSP的一个关键因素是,是否存在足够的能够较好地适应DSP处理器指令集的程序员。

8 开发工具的要求

因为DSP应用要求高度优化的代码,大多数DSP厂商都提供一些开发工具,以帮助程序员完成其优化工作。例如,大多数厂商都提供处理器的仿真工具,以准确地仿真每个指令周期内处理器的活动。无论对于确保实时操作还是代码的优化,这些都是很有用的工具。

GPP厂商通常并不提供这样的工具,主要是因为GPP程序员通常并不需要详细到这一层的信息。GPP缺乏精确到指令周期的仿真工具,是DSP应用开发者所面临的的大问题:由于几乎不可能预测高性能GPP对于给定任务所需要的周期数,从而无法说明如何去改善代码的性能。

----------------------------------------------
支持中电网

发贴时间: Feb 18 2005 5:08PM ||     

 
DSP是什么(续1)
DSP硬件结构的特点和软件的特点硬件结构的特点

1 Harvard结构

程序与数据存储空间分开,各有独立的地址总线和数据总线,取指和读数可以同时进行,从而提高速度,目前的水平已达到90亿次浮点运算/秒(9000MFLOPS)

2 采用流水作业(pipline)

3 独立的硬件乘法器

乘法指令在单周期内完成,优化卷积、数字滤波、FFT、相关、矩阵运算等算法中的大量重复乘法

4 循环寻址(Circular addressing),位倒序(bit-reversed)等特殊指令

使FFT、卷积等运算中的寻址、排序及计算速度大大提高。1024点FFT的时间已小于1μs

5 独立的DMA总线和控制器

有一组或多组独立的DMA总线,与CPU的程序、数据总线并行工作,在不影响CPU工作的条件下,DMA速度已达800Mbyte/s以上

6 多处理器接口

使多个处理器可以很方便的并行或串行工作以提高处理速度

7 JTAG(Joint Test Action Group)标准测试接口(IEEE 1149标准接口)

便于对DSP作片上的在线仿真和多DSP条件下的调试

软件的特点 1 立即数寻址

2 直接寻址

TI公司的TMS320系列芯片将数据存储器分为512页,每页128字。设置一个数据页指针DP(Data Pointer),用9-bit指向一个数据页,再加上一个7-bit的页内偏移地址,形成16-bit的数据地址。这样有利于大大加快寻址速度。

3 间接寻址

8个辅助寄存器(AR0--AR7),由一个辅助寄存器指针(ARP 3-bit)来指定一个辅助寄存器算术单元(ARAU)作16-bit无符号数运算,决定一个新的地址,装入辅助寄存器中的一个

AR0--AR7的内容相当灵活,可以装入立即数,加上立即数,减去立即数;也可以从数据存储器装入地址;还可以作以下的变址寻址:

将该AR的内容加1或减1,再寻址(循环常用) 将该AR的内容加上或减去AR0的内容,再寻址 将该AR的内容逆向进位加上或减去AR0的内容,再寻址

由于采用反向进位,得以实现位倒序寻址

原序 原地址 位倒序后地址 位倒序 0 000 000 0 1 001 100 4 2 010 010 2 3 011 110 6 4 100 001 1 5 101 101 5 6 110 011 3 7 111 111 7 例:MAC X0,Y0,A X:(R0)+,X0 Y:(R4)+N4,Y0 这条指令命令DSP56300:

将寄存器X0和Y0中的数相乘 结果加到Acc A中 将寄存器R0所指的X存储器地址中的值装入寄存器X0 将寄存器R4所指的Y存储器地址中的值装入寄存器Y0 R0的值加1 寄存器N4的值加给R4

可以看到,运算后的次序符合FFT的蝶形运算的要求

采用循环寻址实现零开销的循环,大大增进了如卷积、相关、矩阵运算、FIR等算法的实现速度

4 独特的乘法指令

----------------------------------------------
支持中电网

发贴时间: Jun 2 2004 2:02PM ||     



DSP是什么(续3)
DSP应用系统的运算量是确定选用处理能力多大的DSP芯片的基础。那么如何确定DSP系统的运算量以选择DSP芯片呢?

1. 按样点处理

按样点处理就是DSP算法对每一个输入样点循环一次。例如;一个采用LMS算法的256抽头德的自适应FIR滤波器,假定每个抽头的计算需要3个MAC周期,则256抽头计算需要256*3=768个MAC周期。如果采样频率为8KHz,即样点之间的间隔为125μs的时间,DSP芯片的MAC周期为200μs,则768个周期需要153.6μs的时间,显然无法实时处理,需要选用速度更快的芯片。

2. 按帧处理

有些数字信号处理算法不是每个输入样点循环一次,而是每隔一定的时间间隔(通常称为帧)循环一次。所以选择DSP芯片应该比较一帧内DSP芯片的处理能力和DSP算法的运算量。假设DSP芯片的指令周期为P(ns),一帧的时间为⊿τ(ns),则该DSP芯片在一帧内所提供的最大运算量为⊿τ/ P 条指令。

5 DSP芯片的基本结构

DSP芯片的基本结构包括:

(1)哈佛结构;

(2)流水线操作;

(3)专用的硬件乘法器;

(4)特殊的DSP指令;

(5)快速的指令周期。

哈佛结构

哈佛结构的主要特点是将程序和数据存储在不同的存储空间中,即程序存储器和数据存储器是两个相互独立的存储器,每个存储器独立编址,独立访问。与两个存储器相对应的是系统中设置了程序总线和数据总线,从而使数据的吞吐率提高了一倍。由于程序和存储器在两个分开的空间中,因此取指和执行能完全重叠。

流水线与哈佛结构相关,DSP芯片广泛采用流水线以减少指令执行的时间,从而增强了处理器的处理能力。处理器可以并行处理二到四条指令,每条指令处于流水线的不同阶段。入图示出一个三级流水线操作的例子。

CLLOUT1

取指 N N-1 N-2

译码 N-1 N N-2

执行 N-2 N-1 N

图4-1 三级流水线操作

专用的硬件乘法器

乘法速度越快,DSP处理器的性能越高。由于具有专用的应用乘法器,乘法可在一个指令周期内完成。

特殊的DSP指令DSP芯片是采用特殊的指令。

快速的指令周期哈佛结构、流水线操作、专用的硬件乘法器、特殊的DSP指令再加上集成电路的优化设计可使DSP芯片的指令周期在200ns以下。

6 DSP系统的特点

数字信号处理系统是以数字信号处理为基础,因此具有数字处理的全部特点:

(1) 接口方便。DSP系统与其它以现代数字技术为基础的系统或设备都是相互兼容,这样的系统接口以实现某种功能要比模拟系统与这些系统接口要容易的多。

(2) 编程方便。DSP系统种的可编程DSP芯片可使设计人员在开发过程中灵活方便地对软件进行修改和升级。

(3) 稳定性好。DSP系统以数字处理为基础,受环境温度以及噪声的影响较小,可靠性高。

(4) 精度高。16位数字系统可以达到的精度。

(5) 可重复性好。模拟系统的性能受元器件参数性能变化比较大,而数字系统基本上不受影响,因此数字系统便于测试,调试和大规模生产。

(6) 集成方便。DSP系统中的数字部件有高度的规范性,便于大规模集成。

7 DSP芯片的应用

自从DSP芯片诞生以来,DSP芯片得到了飞速的发展。DSP芯片高速发展,一方面得益于集成电路的发展,另一方面也得益于巨大的市场。在短短的十多年时间,DSP芯片已经在信号处理、通信、雷达等许多领域得到广泛的应用。目前,DSP芯片的价格也越来越低,性能价格比日益提高,具有巨大的应用潜力。DSP芯片的应用主要有:

(1) 信号处理--如,数字滤波、自适应滤波、快速傅里叶变换、相关运算、频谱分析、卷积等。

(2) 通信--如,调制解调器、自适应均衡、数据加密、数据压缩、回坡抵消、多路复用、传真、扩频通信、纠错编码、波形产生等。

(3) 语音--如语音编码、语音合成、语音识别、语音增强、说话人辨认、说话人确认、语音邮件、语音储存等。

(4) 图像/图形--如二维和三维图形处理、图像压缩与传输、图像增强、动画、机器人视觉等。

(5) 军事--如保密通信、雷达处理、声纳处理、导航等。

(6) 仪器仪表--如频谱分析、函数发生、锁相环、地震处理等。

(7) 自动控制--如引擎控制、深空、自动驾驶、机器人控制、磁盘控制。

(8) 医疗--如助听、超声设备、诊断工具、病人监护等。

(9) 家用电器--如高保真音响、音乐合成、音调控制、玩具与游戏、数字电话/电视等

DSP芯片开发和产品应用一、DSP程序开发

  为了使DSP有效运行、必须要用能充分考虑DSP内部并行性的汇编语言进行编制DSP程序。前面提到,美国TI公司的DSP推销员说DSP编程容易,实际上他是指DSP的汇编语言相对于计算机的汇编语言而言,比较容易一些,因为没有像计算机汇编语言那样复杂。但是,对于习惯用高级语言编程的用户,利用DSP汇编语言编程还是有困难的。因为,汇编语言是面向机器的程序设计语言,它是一种把机器语言(机器指令码)符号化的低级程序设计语言。使用计算机汇编语言的用户一定要熟悉机器硬件结构和指令系统;使用DSP汇编语言的用户一定要熟悉DSP芯片内部结构和指令系统,这对于DSP用户来说也实非容易的事情。

  从发展DSP应用角度观察,应该有相当规模的DSP开发应用队伍,这个队伍的成员应该掌握使用汇编语言AssemblyLanguage编程基本功,才能开发出高效率的DSP应用程序。特别是在利用多个DSP芯片开展并行处理应用时,具有这种编程基本功底是绝对必要的。甚至,在某些专业应用领域,诸如,日本简易便携电话PHS、磁盘驱动器里的控制系统等,可能仅有一块DSP芯片,供编程的空间很小,需要用DSP指令编写高效率精干的小程序。因为,利用汇编语言编制应用程序,DSP还需要一种汇编程序Assembler通过代真把源程序中各个符号转换成DSP可执行的指令代码。Assembler也要占用DSP的有限存储空间。前文提及的正确理解DSP,实际上也包括这一层含义。也就是说,不对DSP的性能和结构有透澈地了解,很难推广DSP应用。

  从DSP编程角度观察,需要重视以下两点:首先,DSP处理任务的执行时间要给予重视,其次,C语言及其编译程序Compiler支持工具也很重要。这是日本武藏工业大学的学者曾祢元隆等研究DSP应用的重要心得体会,对于推广DSP应用具有重要意义。

[此贴子已经被作者于2004-6-2 14:08:16编辑过]

----------------------------------------------
支持中电网

发贴时间: 2004-6-2 14:08:16 ||     

DSP是什么(续4)
现在,美国TI公司尽管已提供软件支持工具,但是,对于并行执令还有一定的困难。如今美国、墨西哥和日本武藏工业大学等,正在积极地开发更好用的编译程序,除了特殊指令以外,已经可以实现自动翻译。日本武藏工业大学的DSP研究与开发状况如下:对于TI公司的DSP系列产品中的C40和C3X的新编译程序已基本上开发出来,对于其他的DSP用的软件工具正在加紧研究与开发之中。

   二、多个DSP并行处理

  随着数字信号处理器DSP芯片逐年增多和芯片价格的降低,多个DSP芯片并行处理的实用化研究,成为近年来DSP研究热点之一。提起多个DSP并行处理,使人们很快联想到跨入九十年代的超级并行处理MPP(MassivelyParalleProcessing)巨型机热潮。这类机器一上市,宣称具备三

大特点:

  〈1〉高性能?/FONT>MPP巨型机的峰值处理性能可以理解为单个微处理器的性能与系统内容纳的微处理器总个数的乘积,系统里链接的MPU个数愈多,则峰值处理速度愈高;

  〈2〉伸缩性椣低成焖跣园嘀趾澹低承阅堋⑾低惩ㄐ糯淼榷加胂低衬诹唇拥奈⒋砥鞲鍪上咝栽龀す叵担低彻婺?纱罂尚。硐殖隽己玫目缮焖跣裕?/P>

  〈3〉高性能/价格比椢蘼?/FONT>CISC还是RISC微处理器MPU都是工业化大生产的标准产品,构筑成MPP巨型机,其性能可同向量机媲美,而价格仅为向量巨型机的1/10甚至更低,堪称是高性能/价格比。

  九十年代初期的MPP巨型机,由于技术不够成熟,特别是编译系统不成熟,导至MPP巨型机实际有效性能仅为其峰值处理速度的1/10以下。早期的MPP巨型机厂家,如象赫赫有名的美国TMC公司、KSR(KendallSquareResearch)公司都先后倒闭,美国著名的小巨型机厂家Convex公司已被HP公司并购。但是,这些有创见的小公司开发的先进技术,依然存在并经过不断改进正被发扬光大。例如,有关的“超级计算机更高无尽头”报道,MPP巨型机的峰值处理速度已超过1TFLOPS,正向100TFLOPS冲刺。

  现在,对于超级并行处理MPP技术已历经多年探索研究,正开始走出摇篮期向成熟化方向迈进。据日本京都大学工学部教授富田真治分析,MPP技术走向成熟,将需在以下5方面取得突破性进展:〈1〉并行处理语言、调试程序和软件工具,要求实现标准化;〈2〉需要加强应用研究,掌握和理解大规模应用程序,要对并行处理程序的处理类型分类,需要有基准测试程序评价;〈3〉研究MPP巨型机的单元处理器的体系结构,优化出单元处理器结构;〈4〉共享存储器结构和消息传送结构有待进一步研究,大规模共享存储器系统里,缓存控制采取登录方式可能会有大发展;〈5〉高速互连网络和同步结构是MPP系统的重要组成部分,有待进一步研究和发展。美国NII构想的核心部分HPCC计划已接近尾声,日本与美国HPCC对抗的计划Mandala正在实施,将必然要对上述MPP关键性技术取得突破性进展。

  在这样的背景下,国际上出现多个DSP并行处理研究与开发热点,显然是紧密相关的。因为,把MPP系统与现在研究的多个DSP并行处理系统两相对照(参阅图1所示的多个DSP网络拓扑结构),不难发现MPP系统和多个DSP并行处理系统极为相拟。现在之所以称图1所示的系统为多个DSP并行处理系统,是因为网络结点上的处理器是数字信号处理器DSP。假若标明处理器是复杂指令集计算机CISC型或精简指令集计算机RISC型微处理器MPU,则该系统就是超级并行处理巨型机系统。因此,现在出现的多个DSP网络拓扑结构或者多个DSP并行处理系统并不是新东西,而是现代MPP技术向数字信号处理领域扩散的结果。现代科学技术高度综合发展的今天,各种科学技术相互交叉和渗透,MPP技术扩展到数字信号处理领域也是很自然的。

  欧美各工业发达国家已把DSP并行处理系统中结点处理器个数扩展到128个,试图获得更高的信号处理速度。日本武藏工业大学现已研制出几种DSP网络,例如,C25 16、C40 32和86220 16等,实现高速运算。据该大学的DSP研究与开发实践发明,利用多个DSP执行大规模处理任务时,各DSP之间交换数据实现数据通信和对各DSP均衡地分配处理任务,都是重要的研究课题。这个问题不解决,尽管网络里有多个DSP结点,也是不能充分发挥各结点DSP作用和实现高速处理。连接DSP的网络拓扑结构是多种多样,最简单的连接方式是总线结构,其它,像超立方体连接

、树状连接和环状连接等等,都各有其特点,也只能根据应用问题的类型选择相应的连接机构。特别是多个DSP并行处理系统的管理也是个难题,为此需要考虑内置操作系统OS功能的管理电路,用于母板,路由器和仲裁器等管理。

  从日本高等学校研究与开发多个DSP并行处理系统中所遇到技术问题,可以看到问题的性质和在MPP系统里的问题在本质上是一样的,只是因为目前系统规模还不大,问题不那么突出罢了。不难想像随着DSP网络拓扑结构规模的扩大,必然要借鉴更多的MPP新技术。无疑,也必须要研

究DSP并行处理语言和编译程序以及调试软件工具;需要掌握和理解DSP大规模应用程序;需要研究适合多个DSP并行处理系统中的结点DSP的体系结构,优化出DSP结构;对于共享存储器结构,消息传送结构以及DSP互连网络结构,都将需要进行深入研究。难怪,日本武藏工业大学电力信息研究室的教授曾弥元隆一再大声疾呼,要正确地理解DSP功能,将其用于控制和实时计算,巨型实时计算,要考虑研制出经得住国际竞争的系统产品。他还着重指出,多DSP网络是国际上近一两年出现的新研究热点,值得注意的是国际上已把多DSP的网络系统用于VR和CG等领域,日本应该在这方面有所作为。

   三、瞄准CG和VR

  所谓计算机图像学CG(ComputerGraphics)是研究用计算机处理图形信息,或者是研究处理人和计算机之间图形通信等有关的理论和技术叫作计算机图像学CG。众所周知,传统的方法把要求计算机处理的问题输入到计算机和获取计算机处理的结果,都采用字母和数码形式。但是,在日常工作、学习和生活中,人们习惯于和图表、图形打交道,因为这类表达方式直观且方便。随着计算机科学技术的进步,出现图形输入/输出设备及其相应的图形处理软件,这也为计算机图形学CG奠定了物质基础。现代计算机图形学包括图形的输入、图形的生成,图形在机器里的表示,图形的操作处理以及人机交互图形通信等诸多内容。

  另一方面,美国VPIResearch公司提出虚拟现实VR(VirtualReality)新技术术语并且向市场推出VR系统产品RB2,把数据手套(DataGlove)作为人机接口,头盈式显示器HMD(HeadMountdeDisplay)后来也作为VR系统的配套输出设备。VR系统现在也称为人工现实系统AR(ArtificialReality)。这也说明VR系统的本质,利用它可使人一面用HMD观察由计算机图形学CG技术实现的3维空间,一面把人带入到人工实现的虚拟世界,利用数据手套操作,使人有如身临其境地去体验和感受这人工虚拟世界。

  莫道CG和VR技术都不是日本高技术企业发明的,一旦日本厂家介入这一领域里,利用其先进生产设备和制造工艺迅速地改进CG和VR技术产品。例如,日本日商电子公司完全接产VPLReseach公司的数据手套DatagloveModelJ以后,已于1995年将其售价降低50-60万日元;利用新电子器件和工艺,制作出性能更高、价格更便宜的兼容新产品。该公司利用廉价PC机同引进美国Autodesk公司的VR软件CDK(CyberspaceDeveloperKit)相结合,开发出新的系统产品VRmaker,已于1995年大量投放市场。与VRmaker系统配套的HMD,其售价高达210万日元。自从1996年夏季以来,日本松下电工、索尼、岛津制作所和Olympus光学工业公司等厂家,纷纷将其HMD新产品投放市场。例如,Olympus光学工业公司的HMD新产品MediamaskMW601,LCO尺寸为1.35英寸,象素点个数为1068 480,产生的立体虚像与人眼距离约为2m,HMD外形尺寸184 230 234mm3,重量700克,售价仅为90万日元;索尼公司的PLM-50型HMD新产品,能显示2维虚像,象素点个数为800 225,重量为300克,其售价仅为8.8万日元。实际上,日本厂家早已开发出HMD原型(92-93年),之所以迟迟未能上市,是因为一直同大学和医学单位协作,开展评价HMD对视觉的影响。现已证实,索尼的PLM-50 型HMD在使用2小时左右看电影),完全对人视觉无害。显示3维图像HMD,对视觉的影响仍在调查之中,对视沉影响程度尚不完全清楚。

  近年来,CG和VR技术应用在日本已日益广泛,诸如整形手术后手功能修复,手语输入,机器人手臂远程操作、虚拟厨房仿真体验系统,3维CG动画制作,计算输出数据可视化,虚拟手术模拟,产品原型装配与设计验证等等,正向家庭娱乐等领域扩展。日本自从泡沫经济破灭以后,正采取新经济政策恢复经济、低附加产值的电子产品生产早已转向海外,国内振兴电子产业正向高技术高附加产值的产品转移。例如,CG和VR系统产品也正是日本高技术企业的目标之一。而运行CG软件和提供VR系统3维图形处理能力的最关键器件DSP,正是日本厂家薄弱的一环。日本武

藏工业大学电力信息研究室教授曾弥等,无疑正承担日本DSP研究与开发的重任。再这样的背景下,日本的专家学者怎能不在日本新闻媒介上大声疾呼要理解和重视DSP呢。况且,多DSP网络卡作为3为图形加速器在国际上已广泛应用CG和VR系统的情况下,无疑,日本研究与开发多DSP并行处理系统已迫在眉睫,刻不容缓。

由于数字信号处理器DSP可以高速处理极为大量的数字化数据,在各种电子机日益数字化的今天,DSP将要继续高速增长,其应用仍将扩大。根据新的需求发展,DSP将要向低价格、高性能、专用化和扩充有快闪ROM功能方向发展。

----------------------------------------------