飞利浦显示器吊打三星:双向电泳实验过程及相关溶液配置

来源:百度文库 编辑:偶看新闻 时间:2024/04/28 01:55:17
 双向电泳实验过程及相关溶液配置
A. 实验过程
一、 实验原理:2-DE的第一向电泳等电聚焦是基于等电点不同而将蛋白粗步分离,第二向SDS-PAGE是基于蛋白质分子量不同,而将一向分离后的蛋白进一步分离。这样就可以得到蛋白质等电点和分子量的信息。
二、 实验步骤:
1. 样品的溶解
取纯化后的晶体蛋白3.0mg,加入300ul裂解液(1mg蛋白:100ul裂解液)振荡器上振荡10min左右,共处理一个小时。其中每隔10~15分钟振荡一次,然后13200rpm离心15min除杂质,取上清分装,每管70ul,—80oC保存。
2. Bradford法测蛋白含量
取0.001g BSA(牛血清白蛋白)用1ml超纯水溶解,测定BSA标准曲线及样品蛋白含量。
取7个10ml的离心管,首先在5个离心管中按次序加入0ul, 5ul, 10ul, 15ul, 20ul 的BSA溶解液,另2管中分别加入2 ul的待测样品溶液,再在每管中加入相应体积的双蒸水(总体积为80ul),然后,各管中分别加入4ml的Bradford液(原来配好的Bradford液使用前需再取需要的剂量过滤一遍方能使用),摇匀,2min在595nm下,按由低到高的浓度顺序测定各浓度BSA的OD值,再测样品OD值。(测量过程要在一个小时内完成)。例如:

编号 蛋白量(ul) Buffer(ul) Bradford(ml) OD595值
1 0 80 4 0
2 5 75 4 0.024
3 10 70 4 0.061
4 15 65 4 0.091
5 20 60 4 0.116
Bt4 2 78 4 0.079
Bt4 4 76 4
转Bt4 2 78 4 0.075
转Bt4 4 76 4

标准曲线方程式:Y= aX+b.其中Y为 OD值,X为蛋白含量。 a、b通过作图输入数据可知
相关系数通过输入数据,作图,软件分析可得
OD值测量过程:
比色皿用70%的乙醇保存,待用时用双蒸水冲洗,再用无水乙醇冲洗,双蒸水冲洗,再加入待测样品溶液润洗,然后,加入样品,测定OD值。
3. 双向电泳第一向---IEF(双向电泳中一律使用超纯水)
3.1 水化液的制备
称取2.0mg 的DTT,用700ul水化液储液溶解后,加入8ul 0.05% 的溴酚兰,3.5ul(0.5%v/v)IPG buffer (pH 3-10)振荡混匀,13200rpm离心15min 除杂质,取上清。
在含300ug 蛋白(经验值)的样品溶解液中加入水化液,至终体积为340ul, 振荡器上振荡混合,13200rpm离心15min除杂质,取上清。
3.2 点样,上胶
分两次吸取样品,每次170ul, 按从正极到负极的顺序加入点样槽两侧,再用镊子拨开ImmobilineDryStrip gels (18cm,pH 3—10)胶条,从正极到负极将胶条压入槽中,胶面接触加入的样品。注意:胶条使用前,要在室温中平衡30分钟;加样时,正极要多加样,以防气泡的产生;压胶时不能产生气泡;酸性端对应正极,碱性端对应负极;样品加好后,加同样多的覆盖油(Bio-Rad),两个上样槽必须与底线齐平。
3.3IPG聚焦系统跑胶程序的设定(跑胶温度为20oC)
S1 (30v, 12hr, 360vhs, step)
S2 (500v, 1hr, 500vhs, step)
S3 (1000v, 1hr, 1000vhs, step)
S4 (8000v, 0.5hr, 2250vhs, Grad)
S5 (8000v, 5hr, 40000vhs, step) 共计44110vhs, 19.5小时
其中S1用于泡胀水化胶条,S2和S3用于去小离子,S4和S5用于聚焦
3.4 平衡
用镊子夹出胶条,超纯水冲洗后,在滤纸上吸干(胶面,即接触样品那一面不能接触滤纸,如果为18cm的胶条要将两头剪去),再以超纯水冲洗,滤纸吸干(再次冲洗过程也可省略),然后用镊子夹住胶条以正极端(即酸性端)向下,负极端(即碱性端)向上,放入用来平衡的试管中(镊子所夹的是碱性端,酸性端留有溴酚兰作为标记),用平衡液A,平衡液B先后平衡15min。注:平衡时要注意保持胶面始终向上,不能接触平衡管壁。
平衡第二次时,在沸水中煮Marker 3min,剪两个同样大小的小纸片,长度与一向胶条的宽度等同,然后吸取煮好的Marker,转入SDS—PAGE胶面上,保持紧密贴合;同样在第二次平衡时,煮5%的琼脂糖10ml。

4. 双向电泳第二向---SDS-PAGE
4.1 配胶(两根胶条所用剂量)
分离胶:(T=8%80 ml):溶液于真空机中抽气后再加APS和TEMED
30 % 丙烯酰胺储液 21.28ml
分离胶buffer 20ml 10%APS 220ul TEMED 44 ul
双蒸水 38.72ml
浓缩胶:(T=4.8% 10ml)
30 % 丙烯酰胺储液 1.6ml
浓缩胶buffer 2.5ml 10%APS 30ul TEMED 5ul
双蒸水 5.9ml
4.2 灌胶
将玻璃板洗净后,室温晾干,然后,将电泳槽平衡好,玻璃板夹好,再在玻璃板底部涂上凡士林以防漏胶,倒入正丁醇压胶,凝胶后(这时会出现三条线),用注射器吸去正丁醇,超纯水洗两次,再用滤纸除水后,倒入浓缩胶,正丁醇压胶,凝胶后,用注射器吸去正丁醇,超纯水洗两次,再加入超纯水,用保险膜封好。
4.3 转移
剪两个小的滤纸片,吸取Marker后,放入SDS—PAGE胶面的一端。然后,将平衡好的IPG胶条贴靠在玻璃板上,加少量的5%的琼脂糖溶液在胶面上(琼脂糖凝胶在转移前十几分钟的时候配好,水浴加热溶解,并保持烧杯中水处于沸腾状态,至用之前再拿出来),再将IPG胶条缓缓加入SDS—PAGE胶面,其中不断补加5%的琼脂糖溶液,注意不能产生气泡。
4.4 跑胶
浓缩胶13mA 分离胶20mA 共约5.5个小时
5. 银染(两根胶条所用剂量)(银染特别注意用超纯水)
5.1固定 30min 无水乙醇 200ml+乙酸50ml,用超纯水定容至500ml
5.2敏化 30min 无水乙醇 150ml
Na2S2O3?5H2O1.5688g
无水乙酸钠 34g
先用水溶解Na2S2O3?5H2O和乙酸钠,再加乙醇,最后定容至500ml
5.3洗涤 5min×3次
5.4银染 20min AgNO3 1.25g 用超纯水定容至500ml
5.5洗涤 1min×2次
5.6显影 无水Na2CO3 12.5g 用超纯水定容至500ml
甲醛(37%)0.1ml, 临时加
5.7终止 10min EDTA—Na2?2H2O7.3g用超纯水定容至500ml
5.8洗涤 5min×3次
注:整个双向电泳实验中全部使用超纯水,尽量减少离子的影响。
B. 实验相关试剂配制
1. Bradford 工作液
95%乙醇 25ml 先用乙醇溶解考马斯亮兰G250,溶解完后再加磷
85%磷酸 52ml 酸,最后超纯水定容至500ml。过滤后置于棕色瓶
考马斯亮兰G250 0.035g 外加油皮纸保存(Bradford不稳定,一周内有效)
2. 裂解液
尿素 8M
硫脲 2M
CHAPS 4%
DTT 60 mM
Tris—base 40 mM(如果有条件可以添加PMSF 0.5mM和5%的Pharmalate)
3. 水化液储液
尿素 8M
硫脲 2M
CHAPS 4%
Tris—base 40 mM
4. 分离胶buffer (pH8.8) 250ml
SDS 0.4% 1g
Tris—HCl 1.5M 45.4275g
5. 浓缩胶buffer (pH6.8) 100ml
SDS 0.4% 0.4g
Tris—HCl 0.5M 6.07g
6. 凝胶储存液(30%的丙烯酰胺) 250ml
Acr 29.2% 73g
Bis 0.8% 2g
7. 电极缓冲液(跑一次要配制2500ml)
甘氨酸 43.2g 36g
Tris 9g 或 7.5g
SDS 3g 2.5g
超纯水定容至3000ml 超纯水定容至2500ml
8. 0.5M Tris —HCl pH 6.8储液
6.1g Tris先用30ml超纯水溶解,再用46ml,3M HCl调pH6.8,再加水定容至100ml
9. 平衡液储液
脲(即尿素) 36g
甘油 30% 30ml
SDS 1% 1g
0.5M Tris—HCl pH6.810ml 超纯水定容至100ml
10. 平衡液A(一根胶条)
DTT 20mg
平衡液储液 10ml
11.平衡液B(一根胶条)
碘乙酰氨 300mg
平衡液储液 10ml
0.05%溴酚兰 15ul (平衡液A、B均需临时配制)
12.0.5%琼脂糖10ml
琼脂糖 0.05g
电极缓冲液 10ml
溴酚兰 25ul
补:4、5、6的溶液需过滤后储存于4OC备用。
C. 药品
CHAPS 兼性离子去垢剂 去垢剂可破坏蛋白质分子之间的疏水相互作用,
SDS 离子型去垢剂 提高蛋白质的溶解性,防止在等电聚焦时析出

尿素 离液剂 可改变或破坏氢键等次级键的结构,使蛋白质
硫脲 离液剂 变性并使蛋白失活。尿素和硫脲联合使用,可
以大大增加蛋白质的溶解性

DTT 还原剂 断裂蛋白质分子中Cys残基之间形成的二硫键,增加蛋白质的溶解性。但过分提高DTT的浓度,由于它pKa在8左右,因而会影响pH梯度。DTT在碱性pH下会去质子化,等电聚焦时会损耗,导致二硫键复原,蛋白质沉淀

BSA Bradford中制作标准曲线用
无水乙醇 和磷酸一起,提供Bradford中的环境
磷酸 提供Bradford中的酸性环境
Tris 构成缓冲液的成分,可用于抗衡pH的变化
IPG buffer
覆盖液 即矿物油,防止水分蒸发,样品干燥。

丙烯酰胺(Acr) 以丙烯酰胺为单体,甲叉二丙烯酰胺为交联剂,
甲叉二丙烯酰胺 (Bis) 在催化剂(Aps)和引发剂(TEMED)作用下,聚合交联成三维网状结构

琼脂糖
溴酚兰 指示剂作用
碘乙酰氨(IAA) 平衡液B中使用,中和A液中的DTT
正丁醇 比聚丙烯酰胺密度小,用于凝胶制作过程中的压胶
甘油 无机盐的良好溶剂,热稳定性好
Marker
考马斯亮兰G250(Bradford法用) 考马斯亮兰G250有红、蓝两种不同颜色的形式在一定浓度的乙醇及酸性条件下,可配成淡红色的溶液,当与蛋白结合后,产生蓝色化合物,反应迅速而稳定,反应化合物在465~595nm处有最大的光吸收值,化合物颜色 深浅与蛋白浓度的高低成正比关系,因此可检测595nm的光吸收值的大小计算蛋白的含量
甘氨酸 与Tris构成缓冲系统
AgNO3
EDTA 金属螯合剂,可以结合银离子,终止银染过程  
loading...


2006-12-11
蛋白质组研究第一步:双向电泳蛋白样品制备

开篇之际,首先来看看这两句话:
“在制备中丢失的蛋白是永远不可能在后面的实验中弥补回来的”,
“让我们把蛋白质看作是具有独特而奇妙性质的实体”。

在直击蛋白质组学研究技术全过程 一文中就提到过,目前蛋白质组学研究主要是两条互补的实验工作流程——基于凝胶的工作流程(Gel-based workflow)和基于液相色谱的工作流程(LC-based workflow)。其中对于前者而言,双向电泳技术是核心,而这核心中的核心就是电泳的第一步:蛋白样品制备。这是因为不像双向电泳的其它过程有仪器,有大致相似的操作程序,蛋白样品由于其结构特性各异,又必须使其完全溶解和尽可能少的化学修饰,所以不可能有一个通用的技术,只能通过大量的实验来积累经验。正如开篇所引用的两句话中包含的深意:在研究蛋白的过程中,既需要严谨的技术流程,规范的操作手段来确保蛋白研究的完整性,也需要将其看成是独特而奇妙的个体,结合以往经验但又不拘泥于经验,才能真正揭开她神秘的面纱。

为什么要进行样品制备

“为什么要进行样品制备?电泳的目的不就是分离吗?”刚接触双向电泳的小菜鸟有可能就会这么问。这个问题很好回答,这是由于目前双向电泳一般只能分辨到1000-3000个蛋白质点(spot),而样品中的蛋白种类可达到10万种以上,因此样品的制备是必须的。另外比如像对临床组织样本进行研究,寻找疾病标记的蛋白质组学研究目的,由于临床样本都是各种细胞或组织混杂,而且状态不一,如肿瘤组织中,发生癌变的往往是上皮类细胞,而这类细胞在肿瘤中总是与血管、基质细胞等混杂。所以常规采用的癌和癌旁组织或肿瘤与正常组织进行差异比较,实际上是多种细胞甚至组织蛋白质组混合物的比较,而蛋白质组研究的通常是单一的细胞类型,因此需要进行有效的样品制备。

但是为什么要进行不同步骤的样品制备呢?这不仅仅是由于蛋白本身不同,所以需要不同方法来配合,而且在制备样品的时候,首先需要明确的是什么是实验的最终目的:是分离尽可能多的蛋白还是分离样品中某些感兴趣的蛋白,这些直接决定了你的制备方法,也决定了实验的成功与否。由于想要分离的蛋白必须是完全溶解的,溶解的效果取决于裂解、破碎、沉淀、溶解的过程以及去污剂的选择和各种溶液的组成,因此如果是只对样品中的一部分蛋白感兴趣,可采取预分离的方法,如欲分析的蛋白来自细胞器(细胞核、线粒体和原生质膜),则应先采取超速离心或其他方法将细胞器分离出来再溶解蛋白;如果是希望分离出尽可能多的蛋白,比如进行全蛋白质组分析,则可以将细胞或组织中的蛋白分成几部分,分级制备。

样品制备的原则
应使所有待分析的蛋白样品全部处于溶解状态(包括多数疏水性蛋白),且制备方法应具有可重现性。
防止样品在聚焦时发生蛋白的聚集和沉淀。
防止在样品制备过程中发生样品的抽提后化学修饰(如酶性或化学性降解等)。
完全去除样品中的核酸和某些干扰蛋白。
尽量去除起干扰作用的高丰度或无关蛋白,从而保证待研究蛋白的可检测性。
以上这五项原则是根据北大人类疾病研究中心讲座内容改编而来,基本上可以说是囊括了样品制备过程中的抽象注意事项,之后还会提到具体的注意事项。

样品制备流程

蛋白样品制备过程简而言之就是三步:破碎、沉淀蛋白和去除杂质。虽然说出来不过寥寥的十个字,但是这几个过程经过这么多年,还没有那位研究人员可以说自己已经完全掌握,面对任何蛋白制备手到擒来。

破碎——最小限度的减少蛋白水解和其它形式的蛋白降解原则

样品制备的第一步当然是细胞或者其它样品的破碎,这一步看似简单,但是操作中一旦方法不当,就有可能会丢失样品中的蛋白和导致蛋白被修饰。要想毫发无损的通过这一关,首先就要分析样品的来源,是易碎的细胞还是坚硬的组织?是植物细胞还是真菌?要做到有的放矢,才能事半功倍。

破碎的方法有许多种,包括循环冻融法、渗透法、去污剂法、酶裂解法、超声波法、高压法、液氮研磨法、机械匀浆法和玻璃珠破碎法等(可以归纳为机械法、化学法和物理法),这些方法有不同的应用范围,但基本的原则都是要以最小的限度减少蛋白水解和其它形式的蛋白降解,这也就是在样品制备破碎这一步的关键所在。

就这些方法具体而言,选择的时候如果是较易破碎的细胞组织,就可以采用渗透法,这种方法十分温和,适用于血细胞和组织培养细胞。而对于细菌细胞,则可以采用冻融法,利用液氮一次或者多次反复冻融来裂解细胞。去污剂法适用于组织培养细胞,将样品悬浮于含有去污剂的裂解液中,可以溶解细胞膜释放内含物,如果裂解液中含有SDS,为了不干扰等电聚焦,可以将裂解的样品用含有过量的非离子或者两性离子去污剂的溶液稀释,或用丙酮沉淀法去除SDS。另外酶裂解法适用于植物组织、细菌和真菌细胞。

除了这几种较温和的方法,一些较剧烈的方法也有自己的适用范围,如超声波法适用于细胞悬浮液,高压法常用于有细胞壁的微生物,研磨法适用于微生物和组织,而机械匀浆法是机体软组织破碎最常用的方法之一,玻璃珠破碎法则用于细胞悬浮液和微生物的破碎。

为了确保在这些方法过程中减少热量的产生,可以在低温(冰浴或者液氮)下操作,并且由于在破碎过程中会产生蛋白酶,使蛋白水解,因此也要注意在含有蛋白酶抑制剂的裂解液中进行。

沉淀蛋白 ——可溶性是关键

一般而言,在破碎样品获得蛋白之后常常需要通过蛋白沉淀去除干扰物质和浓缩样品,在这个步骤中重点是要获得可以重新溶解的蛋白,因此对所研究的具体蛋白的特性需要有详细的掌握,这也是体现研究人员工作能力的“check points”。

常见的蛋白沉淀方法有以下几种
沉淀方法
原理
方法  
优点
缺点
硫酸铵沉淀法
高盐浓度的缓冲液促进蛋白聚合沉淀  
在蛋白终浓度大于1mg/mL并含有EDTA的缓冲液(>50mmol/L)将硫酸铵加至饱和,搅拌10-30分钟,离心分离
预分离
不能得到全部蛋白,并且残留的硫酸铵和核酸会影响等电聚焦
三氯醋酸(TCA)沉淀法

在蛋白溶液中加入TCA,使其终浓度为10%-20%,冰浴30分钟。  

被沉淀的蛋白难再溶解,并且长时间将样品置于这种低pH溶液中会引起蛋白降解和修饰
丙酮沉淀法

在蛋白溶液中加入3倍体积的预冷丙酮,20℃沉淀2小时,离心收集蛋白。


TCA-丙酮沉淀法

用含20mmol/L DTT或0.07%β-巯基乙醇的10%TCA溶液20℃沉淀45分钟以上,离心收集,再用20mmol/L DTT 0.07%β-巯基乙醇清洗,空气(冷冻)干燥。
双向电泳常用方法  

醋酸铵沉淀法  

用醋酸铵的甲醇溶液沉淀,再用酚抽提,0.1mol/L甲醇清洗,再用丙酮清洗。
适用含有大量干扰物质的植物样品
步骤繁琐

去除杂质 ——关键是尽量不丢失蛋白和减少蛋白修饰

在样品中常常会含有像核酸、多糖、去污剂和代谢物等非蛋白质杂质,需要去除,否则会影响双向电泳的结果,这个过程有时会造成蛋白的丢失以及蛋白的化学修饰和解聚,特别是后者会导致双向电泳图谱中蛋白点的增多(由于电荷的改变),所以操作中要多加注意。

1. 核酸的清除