手推灭火器几个人使用:国家基础坐标系知识

来源:百度文库 编辑:偶看新闻 时间:2024/04/28 18:25:26
北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系,其坐标详细定义可参见参考文献[朱华统 1990]。1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。  西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。    西安80坐标系与北京54坐标系其实是一种椭球参数的转换作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即 X 平移, Y 平移, Z 平移, X 旋转(WX), Y 旋转(WY), Z 旋转(WZ),尺度变化(DM )。要求得七参数就需要在一个地区需要 3 个以上的已知点。如果区域范围不大,最远点间的距离不大于 30Km( 经验值 ) ,这可以用三参数,即 X 平移, Y 平移, Z 平移,而将 X 旋转, Y 旋转, Z 旋转,尺度变化面DM视为 0 。                   方法如下(MAPGIS平台中):                   第一步:向地方测绘局(或其它地方)找本区域三个公共点坐标对(即54坐标x,y,z和80坐标x,y,z);                   第二步:将三个点的坐标对全部转换以弧度为单位。(菜单:投影转换/输入单点投影转换,计算出这三个点的弧度值并记录下来)                   第三步:求公共点求操作系数(菜单:投影转换/坐标系转换)。如果求出转换系数后,记录下来。                   第四步:编辑坐标转换系数。(菜单:投影转换/编辑坐标转换系数。)最后进行投影变换,“当前投影”输入80坐标系参数,“目的投影”输入54坐标系参数。进行转换时系统会自动调用曾编辑过的坐标转换系数。举个例子,野外采集gps数据,数据是用大地坐标表示的,也就是用经纬度和高程表示。而采集的数据要在地图上显示出来,就需要将经纬度转化为平面坐标,也就是通常说的x,y坐标。因为我国地形图一般采用高斯投影,所以通常转化成高斯平面坐标显示到地图上。而在经纬度向平面坐标转化的过程中,需要用到椭球参数,因此要考虑所选的坐标系,我国常用的坐标系有北京54,西安80,WGS-84坐标系,不同的坐标系对应的椭球体是不一样的,这里你可能会不明白根椭球体有啥关系,是这样的,我们所说的地理数据都是为了描述大地水准面上的某一个点,而大地水准面是不规则的,我们用一个规定的椭球面去拟合这个水准面,用椭球面上的点来近似表示地球上的点。每个国家地理情况不同,采用的椭球体也不尽相同。北京54坐标系采用的是克拉索夫斯基(Krassovsky)椭球体,而西安80采用的是IAG 75地球椭球体。
北京54坐标系与西安80坐标系的转换及常用坐标系参数 2007-07-13 12:07
分类:学习
字号:大大 中中 小小
西安80坐标系与北京54坐标系其实是一种椭球参数的转换作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即 X 平移, Y 平移, Z 平移, X 旋转(WX), Y 旋转(WY), Z 旋转(WZ),尺度变化(DM )。要求得七参数就需要在一个地区需要 3 个以上的已知点。如果区域范围不大,最远点间的距离不大于 30Km( 经验值 ) ,这可以用三参数,即 X 平移, Y 平移, Z 平移,而将 X 旋转, Y 旋转, Z 旋转,尺度变化面DM视为 0 。
西安80坐标系与北京54坐标系其实是一种椭球参数的转换作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即 X 平移, Y 平移, Z 平移, X 旋转(WX), Y 旋转(WY), Z 旋转(WZ),尺度变化(DM )。要求得七参数就需要在一个地区需要 3 个以上的已知点。如果区域范围不大,最远点间的距离不大于 30Km( 经验值 ) ,这可以用三参数,即 X 平移, Y 平移, Z 平移,而将 X 旋转, Y 旋转, Z 旋转,尺度变化面DM视为 0 。
方法如下:
第一步:向地方测绘局(或其它地方)找本区域三个公共点坐标对;
第二步:求公共点求操作系数(菜单:投影转换/坐标系转换)。如果求出转换系数后,记录下来。
第三步:编辑坐标转换系数。(菜单:投影转换/编辑坐标转换系数。)最后进行投影变换,“当前投影”输入80坐标系参数,“目的投影”输入54坐标系参数(长度单位选米角度单位选弧度)。进行转换时系统会自动调用曾编辑过的坐标转换系数。
54国家坐标系:
建国初期,为了迅速开展我国的测绘事业,鉴于当时的实际情况,将我国一等锁与原苏联远东一等锁相连接,然后以连接处呼玛、吉拉宁、东宁基线网扩大边端点的原苏联1942年普尔科沃坐标系的坐标为起算数据,平差我国东北及东部区一等锁,这样传算过来的坐标系就定名为1954年北京坐标系。因此,P54可归结为:
a.属参心大地坐标系;
b.采用克拉索夫斯基椭球的两个几何参数;
c.大地原点在原苏联的普尔科沃;
d.采用多点定位法进行椭球定位;
e.高程基准为 1956年青岛验潮站求出的黄海平均海水面;
f.高程异常以原苏联 1955年大地水准面重新平差结果为起算数据。按我国天文水准路线推算而得。
自 P54建立以来,在该坐标系内进行了许多地区的局部平差,其成果得到了广泛的应用。
1954北京坐标系参考椭球基本几何参数
长半轴a=6378245m
短半轴b=6356863.0188m
扁      率α=1/298.3
第一偏心率平方 =0.006693421622966       第二偏心率平方 =0.006738525414683
80国家坐标系:
采用国际地理联合会(IGU)第十六届大会推荐的椭球参数,大地坐标原点在陕西省泾和县永乐镇的大地坐标系,又称西安坐标系。C80是为了进行全国天文大地网整体平差而建立的。根据椭球定位的基本原理,在建立C80坐标系时有以下先决条件:
(1)大地原点在我国中部,具体地点是陕西省径阳县永乐镇;
(2)C80坐标系是参心坐标系,椭球短轴Z轴平行于地球质心指向地极原点方向,大地起始子午面平行于格林尼治平均天文台子午面;X轴在大地起始子午面内与 Z轴垂直指向经度 0方向;Y轴与 Z、X轴成右手坐标系;
(3)椭球参数采用IUG 1975年大会推荐的参数
因而可得C80椭球两个最常用的几何参数为:
长半轴a=6378140±5(m)
短半轴b=6356755.2882m
扁      率α=1/298.257
第一偏心率平方 =0.00669438499959      第二偏心率平方=0.00673950181947
椭球定位时按我国范围内高程异常值平方和最小为原则求解参数。
(4)多点定位;
(5)大地高程以1956年青岛验潮站求出的黄海平均水面为基准。
WGS-84大地坐标系
WGS-84(World Geodetic System,1984年)是美国国防部研制确定的大地坐标系,其坐标系的几何定义是:原点在地球质心,z轴指向 BIH 1984.0定义的协议地球极(CTP)方向,X轴指向 BIH 1984.0 的零子午面和 CTP赤道的交点。Y轴与 Z、X轴构成右手坐标系(如图所示)。
WGs-84椭球及有关常数:
对应于 WGS-8大地坐标系有一个WGS-84椭球,其常数采用 IUGG第 17届大会大地测量常数的推荐值。下面给出WGS-84椭球两个最常用的几何常数:
长半轴: 6378137± 2(m)
短半轴b=6356752.3142m
扁      率α=1/298.257223563
第一偏心率平方 =0.00669437999013
第二偏心率平方 =0.00673949674223
常用的一些椭球及参数
海福特椭球(1910)
我国52年以前基准椭球  a=6378388m b=6356911.9461279m a=0.33670033670
北京54坐标系基准椭球
a=6378245m b=6356863.018773m a=0.33523298692  1975年I.U.G.G推荐椭球(国际大地测量协会1975)
西安80坐标系基准椭球
a=6378140m b=6356755.2881575m a=0.0033528131778
WGS-84椭球
(GPS全球定位系统椭球、17届国际大地测量协会)  WGS-84 GPS 基准椭球  a=6378137m b=6356752.3142451m a=0.00335281006247.
一般来讲,GPS直接提供的坐标(B,L,H)是1984年世界大地坐标系(Word Geodetic System 1984即WGS-84)的坐标,其中B为纬度,L为经度,H为大地高即是到WGS-84椭球面的高度。而在实际应用中,我国地图采用的是1954北京坐标系或者1980西安坐标系下的高斯投影坐标(x,y,),不过也有一些电子地图采用1954北京坐标系或者1980西安坐标系下的经纬度坐标(B,L),高程一般为海拔高度h。
GPS的测量结果与我国的54系或80系坐标相差几十米至一百多米,随区域不同,差别也不同,经粗落统计,我国西部相差70米左右,东北部140米左右,南部75米左右,中部45米左右。现就上述几种坐标系进行简单介绍,供大家参阅,并提供各坐标系的基本参数,以便大家在使用过程中自定义坐标系。
1、1984世界大地坐标系
WGS-84坐标系是美国国防部研制确定的大地坐标系,是一种协议地球坐标系。WGS-84坐标系的定义是:原点是地球的质心,空间直角坐标系的Z轴指向BIH(1984.0)定义的地极(CTP)方向,即国际协议原点CIO,它由IAU和IUGG共同推荐。X轴指向BIH定义的零度子午面和CTP赤道的交点,Y轴和Z,X轴构成右手坐标系。WGS-84椭球采用国际大地测量与地球物理联合会第17届大会测量常数推荐值,采用的两个常用基本几何参数:
长半轴a=6378137m;扁率f=1:298.257223563。
2、1954北京坐标系
1954北京坐标系是将我国大地控制网与前苏联1942年普尔科沃大地坐标系相联结后建立的我国过渡性大地坐标系。属于参心大地坐标系,采用了前苏联的克拉索夫斯基椭球体。其长半轴 a=6378245,扁率 f=1/298.3。1954年北京坐标系虽然是苏联1942年坐标系的延伸,但也还不能说它们完全相同。
3、1980西安坐标系
1978年,我国决定建立新的国家大地坐标系统,并且在新的大地坐标系统中进行全国天文大地网的整体平差,这个坐标系统定名为1980年西安坐标系。属参心大地坐标系。1980年西安坐标系Xi'an Geodetic Coordinate System 1980 采用1975国际椭球,以JYD 1968.0系统为椭球定向基准,大地原点设在陕西省泾阳县永乐镇,采用多点定位所建立的大地坐标系.其椭球参数采用1975年国际大地测量与地球物理联合会推荐值,它们为:其长半轴a=6378140m; 扁率f=1/298.257。
4 高斯平面直角坐标系和UTM
一般的地图均为平面图,其对应的也是平面坐标.因此,需要将椭球面上各点的大地坐标,按照一定的数学规律投影到平面上成为平面直角坐标.目前世界各国采用最广泛的高斯- 克吕格投影和墨卡托投影(UTM)均是正形投影(等角投影), 即该投影在小区域范围内使平面图形与椭球面上的图形保持相似。为了限制长度变形,,根据国际测量协会规定,将全球按一定经差分成若干带。我国采用6度带或3度带,6度带是自零度子午线起每隔经度。
高斯平面直角坐标系一般以中央经线(L0)投影为纵轴X, 赤道投影为横轴Y,两轴交点即为各带的坐标原点。为了避免横坐标出现负值,在投影中规定将坐标纵轴西移500公里当作起始轴。为了区别某一坐标系统属于哪一带,通常在横轴坐标前加上带号,如(4231898m,21655933m),其中21即为带号。 城建坐标多采用三度带的高斯-克吕格投影。同一坐标系下的大地坐标(即经纬度坐标B,L)与其对应的高斯平面直角坐标(x,y)有严格的转换关系。现行的测绘的教科书的一般都有。
5、 地方独立坐标系
在我国许多城市测量与工程测量中,若直接采用国家坐标系下的高斯平面直角坐标,则可能会由于远离中央子午线,或由于测区平均高程较大,而导致长度投影变形较大,难以满足工程上或实用上的精度要求。另一方面,对于一些特殊的测量,如大桥施工测量,水利水坝测量,滑坡变形监测等,采用国家坐标系在实用中也会很不方便。因此,基于限制变形,以及方便实用,科学的目的,在许多城市和工程测量中,常常会建立适合本地区的地方独立坐标系。建立地方独立坐标系,实际上就是通过一些元素的确定来决定地方参考椭球与投影面.地方参考椭球一般选择与当地平均高程相对应的参考椭球,该椭球的中心,轴向和扁率与国家参考椭球相同。其椭球半径α1增大为:α1=α+Δα1,Δα1=Hm+ζ0式中:Hm为当地平均海拔高程,ζ0为该地区的平均高程异常。而地方投影面的确定中,选取过测区中心的经线或某个起算点的经线作为独立中央子午线.以某个特定方便使用的点和方位为地方独立坐标系的起算原点和方位,并选取当地平均高程面Hm为投影面。
既然说到了不同的坐标系,就存在坐标转换的问题。关于坐标转换,首先要搞清楚转换的严密性问题,即在同一个椭球里的坐标转换都是严密的,而在不同的椭球之间的转换这时不严密的。例如,由1954北京坐标系的大地坐标转换到954北京坐标系的高斯平面直角坐标是在同一参考椭球体范畴内的坐标转换,其转换过程是严密的。由1954北京坐标系的大地坐标转换到WGS-84的大地坐标,就属于不同椭球体间的转换。
不同椭球体间的坐标转换在局部地区的采用的常用办法是相似变换法,即利用部分分布相对合理高等级公共点求出相应的转换参数。一般而言,比较严密的是用七参数的相似变换法,即X平移,Y平移,Z平移,X旋转,Y旋转,Z旋转,尺度变化K。要求得七参数就需要在一个地区需要3个以上的已知点,如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化K视为0,所以三参数只是七参数的一种特例。
如果不考虑高程的影响,对于不同椭球体下的高斯平面直角坐标可采用四参数的相似变换法,即四参数(x平移,y平移,尺度变化m,旋转角度α)。如果用户要求的精度低于20米,在一定范围(2'*2')内,就直接可以用二参数法(ΔB,ΔL)或(Δx,Δy)修正。但在实际操作中,这也取决于选取的公共点是否合理,并保证其足够的精度。