梦到和父母吵架被气哭:世界最细导线,实现量子级飞跃

来源:百度文库 编辑:偶看新闻 时间:2024/05/07 05:58:11

世界最细导线,实现量子级飞跃

《悉尼先驱晨报》科技版(SMH | Technology)2012年1月6日讯

作者:尼奇·菲利普斯(Nicky Phillips)

译者:烈农

SYDNEY physicists have invented the world's narrowest silicon wire – 10,000 times thinner than a human hair – with the same capacity to conduct electricity as a traditional copper wire.

  悉尼的物理学家近日研制出了目前世界上最细的硅导线,粗细仅相当于人类头发丝的万分之一,但电导性能不亚于传统铜导线。

The nanowire, four atoms wide and one atom high, is a significant advancement for the team, which is part of an international race to build the world's first quantum computer.

  这种纳米线是该研究小组重大科研突破,其尺寸仅有四个原子宽、一个原子高,为澳大利亚在建造世界首部量子计算机的国际竞赛中赢得了先机。

These super-fast and super-powerful devices will be able to compute enormous amounts of data in seconds, calculations that would take today's computers years, even decades.

  量子计算机是一种超快、超强的计算设备,简而言之,当今计算机花几年甚至几十年才能完成的大型运算,量子计算机只需几秒就能完成。(点击这里阅读维基百科中文介绍:量子计算机)

Atomic precision ... University of NSW PhD student Bent Weber with his university supervisor, Professor Michelle Simmons. Photo: Domino Postiglione

新南威尔士大学(UNSW)博士生本特·韦伯(Bent Weber)与他的导师米歇尔·西蒙斯教授(Prof. Michelle Simmons)

"It feels great, it's a big breakthrough and we are all very excited," said the University of NSW PhD student Bent Weber, who led the work.

  韦伯牵头此项研究,他表示:“感觉太棒了,这是一项重大科研突破,我们都很激动。”

In the past 40 years, there has been a continual push to develop and manufacture computer components – transistors and wiring – ever smaller to allow for more powerful computers.

  在过去四十年中,业界不断开发、研究、生产更小的计算机零部件,无论是晶体管还是缆线,只要零部件规格越小,计算机就越强大。

"This continuous downscaling means pretty soon you reach a few atoms but building components that small is something the industry can't achieve at the moment," Mr Weber said. In a traditional copper wire, electricity is generated when copper electrons flow through the length of the conductor. But as a wire or conductor becomes smaller, resistance to the electrical flow becomes greater.

  “(零部件)尺寸不断缩小,这意味着很快我们就能达到原子级别的规格,但打造如此细小的零部件却是当前业内暂时无法实现的。”韦伯说。电子流过传统铜导线,产生电流;但当导线或导体越来越小时,电阻就会增大。换句话说,导体的电阻与导体长度成正比,与横截面积成反比。

To overcome this problem, Mr Weber and his team, which included researchers from the University of Melbourne and Purdue University in the US, used specially designed microscopes with atomic precision, to place phosphorus atoms into silicon crystals.

  为了克服这个问题,韦伯和他的团队——包括来自墨尔本大学与美国普渡大学的研究人员一起,利用专门设计的原子精度显微镜,在硅晶体中放置了磷原子。

Attaching phosphorus atoms to silicon made the nanowire behave like copper, and placing the phosphorus atoms less than one nanometre apart meant electrons could flow easily, overcoming the problem of resistance.

  用添加了磷原子的硅制作的纳米线,其导电性与铜无异,而将磷原子以小于一纳米的间隔排放则使得电子可以更容易地在导线中流动,从而克服电阻因导线横截面变小而增大的问题。

"We are showing with our techniques it is possible to downscale components down to a few atoms," said Mr Weber, whose research is published in the journal Science.

  韦伯的研究成果已经在最新一期《科学》(Science)杂志上发布,他说:“利用我们的技术,电子元件尺寸完全降低到几个原子大小。”

Mr Weber's supervisor, physicist Michelle Simmons, said while quantum computers were still more than a decade away, the team's long-term goal was to develop a phosphorus-based quantum computer, where the smallest units of information – the equivalent of bits in classical computers – were replaced with phosphorus atoms.

  韦伯的导师、物理学家米歇尔·西蒙斯教授(Prof. Michelle Simmons)则表示,虽然量子计算机实际制造成功还需要十年之遥或更久,但该小组的长期目标就是开发出一个磷基量子计算机,其信息最小单位——等同于传统计算机的“比特”(bit),或“位”——将被磷原子取代。

"If we are going to use atoms as bits, we've got to have wires at the same scale as the single atoms themselves," Professor Simmons, the director of the Australian Centre of Excellence for Quantum Computation and Communication Technology and the 2010 NSW scientist of the year.

  西蒙斯教授说:“如果我们要使用原子作为比特的替代品,我们就必须打造同等规模的单原子规格线缆。”西蒙斯教授曾荣获澳大利亚“新南威尔士州2010年度科学家”称号,现担任澳大利亚量子计算和通信技术卓越研究中心(ACEQCCT)主任一职。

Scientists expect quantum computers will have a variety of applications, including fast database searches, economic modelling, weather forecasting, airline scheduling and code breaking.

  科学家预计,未来量子计算机必然应用广泛,可用于快速检索数据库、经济建模、天气预报、航空调度以及密码破译等领域。

  西蒙斯教授说:“量子计算机的整个概念就是它能够进行并行计算,这使得运算速度成指数倍增加。”

  她告诉记者:“其实我们真心想回答的一个问题是:我们到底可以把导线做得多细而不失去其导电性能呢?”

  看来即使已经只有头发丝万分之一大小,韦伯与西蒙斯的这个研究团队仍然还有很长的路要走。

  (译注:最后三段文字编译自新南威尔士大学官方新闻报道,点击这里阅读原文并观看一段官方视频。)

  ·新浪微博每天发布本人最新译文摘要,大部分来自译言,你可以点击这里,在微博上关注我;你也可以点击这里,在微博上关注译言