美国飞机被中国击落:《环球科学》2011年十大科学新闻评选(3)

来源:百度文库 编辑:偶看新闻 时间:2024/04/29 18:54:24

《环球科学》2011年十大科学新闻评选(3)

http://www.sina.com.cn  2011年11月23日 17:57  环球科学杂志微博

  14 中国科学家提出生物进化动力新假说

  在5月20日的《科学》杂志上,复旦大学生命科学学院的苏志熙等提出生物进化动力新假说,认为“偏向性突变是导致后生动物进化过程中酪氨酸丢失以及复杂酪氨酸激酶调控网络形成的主要原因”,这一假说修正了目前生命科学领域的权威观点——“后生动物进化过程中酪氨酸丢失是自然选择作用的结果”。

  后生动物是相对于原生动物而言的,原生动物是动物界中最低等的一类真核单细胞动物,一切由多细胞构成的动物都称为后生动物。研究发现,“酪氨酸激酶调控网络”对后生动物进化有重大作用。在生命起源中,“酪氨酸激酶调控”只在“多细胞动物”中进行,绝大部分单细胞生物中没有“酪氨酸激酶调控网络”,而随着多细胞动物复杂性的不断增加,酪氨酸激酶调控网络的演化越来越复杂,因此,酪氨酸激酶网络调控已被科学界公认是导致多细胞动物复杂性演化的重要机制。2009年《科学》杂志刊文提出的假说认为,在后生动物进化过程中,生物体受到自然选择作用,选择性地丢失蛋白质中的酪氨酸, “通过去除潜在的有害磷酸化位点这一机制来适应酪氨酸激酶信号通路的复杂性进化,从而促进了多细胞动物本身的复杂性的进化,如演化出各种不同的细胞类型,组织,器官等”。

  苏志熙等经过严谨的实验研究后提出的新假说认为,后生动物进化过程中,基因组DNA“组成成分”向高GC(鸟嘌呤和胞嘧啶)含量的偏向性突变是导致酪氨酸丢失的主要原因,而这种非选择性的酪氨酸丢失过程才是促使酪氨酸激酶信号通路以及相应的后生动物机体复杂性进化的原始动力。

  据介绍,这个成果解释了多细胞进化过程中绝大部分的蛋白质氨基酸的变化规律,同时可能会帮助科学家更好地探究致癌的原因以及抗癌的方法。

  15、长达两千年气候纪录出炉 热带或经历严重水短缺

  美国物理学家组织网6月9日报道,美国研究人员对取自秘鲁安第斯山脉Laguna Pumacocha湖泊底部一份长约1.8米的沉积物钻核进行了分析,整理出了一份长达2300年的气候记录。在这份沉积物钻核中,保存着许多迄今未知的地化信息和热带地区气候变化的详情。为获得沉积钻核中的气候记录,研究小组分析了其中每年层中的氧同位素(氧-18)的比例,这一比例在湿润季节水平低而在干旱季节水平高。

  根据该记录建立的模型显示,南美洲夏季季风期间的降水量自1900年以后急剧下降,在公元前300年左右降雨量变化最大,此时北半球温度逐渐变暖。目前,随着北半球气温上升,夏季的季风变得更干燥,地球上人口稠密的热带地区将可能经历严重的水短缺;而且,南美赤道地区的降水已经到了两千多年来的最低点。该报告发表在《美国国家科学院院刊》上。

  16、IP地址用尽 IPv6开始试用

  由于互联网用户持续攀升和全球手机上网者不断增多,造成现有的IP地址即将“瓜分完毕”。据悉,负责管理IP地址分配的顶级机构——互联网编号分配机构(IANA)于2月3日对外分配完最后一批IPv4系列地址,最后5个IPv4地址“大礼包”将被分配出去。现在, 既有IP地址将被完全耗尽的消息,迫使各大网站开始在研究增加地址数量的新技术应对挑战。今后互联网服务商可能要为注册用户提供IPv6地址。虽然这款全新的系统目前尚未普及,但是包括谷歌和Facebook在内的热门网站都对此表示支持。其他规模较小的网站也将开始部署IPv6地址系统。对于只支持IPv4地址的网站而言,未来将面临重大挑战。

  17、世界首个三维等离子标尺研制成功

  6月10《科学》杂志报道,美国能源部劳伦斯-伯克利国家实验室与德国斯图加特大学研究人员合作,开发出了世界首个三维等离子标尺,能在纳米尺度上测量大分子系统在三维空间的结构。

  该三维等离子标尺由5根金质纳米棒构成,其中一个垂直放在另外两对平行的纳米棒中间,形成双层H型结构。垂直的纳米棒和两对平行纳米棒之间会形成强耦合,阻止了辐射衰减,引起两个明显的四极共振,由此能产生高分辨率的等离子波谱。标尺中有任何结构上的变化,都会在波谱上产生明显变化。另外,5根金属棒的长度和方向都能独立控制,其自由度还能区分方向和结构变化的重要程度。该标尺有助于科学家在研究生物的关键动力过程中,以前所未有的精度来测量DNA(脱氧核糖核酸)和酶的作用、蛋白质折叠、多肽运动、细胞膜震动等。

  18、合成生物学取得多项进展

  自从美国科学家文特尔在去年4月份创造了首个“人造生命”(参见《环球科学》2010年第7期《人造生命背后》),合成生物学的发展开始加速,生物学家也开始朝着更高的目标迈进。今年,该领域的科学家就取得了多项重要进展。

  今年9月,美国约翰斯?霍普金斯大学医学院的生物学家杰夫?博伊科领导的科研团队从头设计,人工合成出两个染色体片断,并将它们插入一个活酵母菌体内,而接受了合成染色体的酵母菌仍能正常存活。文特尔的“人造生命”是细菌,属于原核生物,而酵母属于更高级的真核生物。博伊科的研究是世界上首次成功合成真核生物的部分基因组,标志人工合成生物基因组的研究又迈出了重要步伐。博伊科还计划,在接下来的5年内,用人造基因组取代酵母菌的所有基因组,让其进化出新菌株。

  几乎同一时间,英国格拉斯哥大学的李?克罗宁用含有金属的巨型分子,成功地制造出了类似于细胞的气泡,并赋予它们一些类似生命的特征。研究人员希望诱使这些气泡演变成完全无机的能自我复制的实体,以此证明存在着完全基于金属(无机物)的生命。

  如果克罗宁的研究得到证实,那么存在外星生命的可能性将大大提高。日本东京大学基础科学系的牟中原说:“很可能存在着一些并不基于碳的外星生命。比如,水星上的物质就和地球上的物质大相径庭,可能存在由无机成分形成的生物。尽管克罗宁暂时还无法证明这一点,但他指出了一个新方向。”

  也是在9月,美国索尔克生物研究所的的助理教授王磊(音译)利用基因技术,修改了一种细菌的遗传序列,成功地将非天然氨基酸(20种天然氨基酸之外的人造氨基酸)整合到细菌蛋白质的多处,制造出了新的人造细菌菌株。

  这些合成出来的细菌在药物研发领域拥有巨大的潜力,据此研制出的药物拥有的生物学功能将远超只包含天然氨基酸的蛋白质。这些分子或许也能作为基础元件,制造从工业溶剂到生物燃料在内的任何产品,帮助解决与石油生产和运输有关的经济和环境问题。

  “这是我们首次制造出一个可用的、拥有多处包含非天然氨基酸的蛋白质的细菌菌株。”王磊说,“尽管这项技术还有改进空间,但这使科学家们在生物工程学领域使用非天然氨基酸几乎就快成为现实了。”

  19、DNA的第7种和第8种碱基被确定

  北卡罗来纳大学医学院生物化学和生物物理学教授张毅领导的研究团队在在7月21日出版的《科学》杂志上撰文指出,他们找到了DNA的第7种、第8种碱基,并在人体胚胎干细胞和实验老鼠器官染色体组的DNA中发现了这两个碱基的踪迹。

  几十年来,科学家们一直认为DNA中只包含有4种碱基:腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶,这4种碱基已成为我们对基因代码如何形成生命的认识的基础。然而不久前,科学家们将碱基的数量扩展到了6种(第5种碱基:5-胞嘧啶甲基,第6种碱基:5-胞嘧啶甲基羟基)。现在,科学家又发现了DNA的第7种碱基5-胞嘧啶甲酰(5-formylcytosine)和第8种碱基5-胞嘧啶羧基(5-carboxylcytosine)。最新的这两种碱基实际上都是胞嘧啶经由Tet蛋白修改后得到的“变身”。Tet蛋白是一种分子实体,其在DNA脱甲基过程和干细胞重新编程方面起关键作用。新碱基代表了DNA脱甲基过程中的一个中间状态。它们可能为干细胞重新编程和癌症研究提供非常重要的信息。”

  20、世界上第一束生物激光问世

  本质上,激光是一个光放大器,它通过电、化学方法或另一束激光将气体、液体或固体中的原子或分子“激发”到一个更高的能级,而“受激”原子中的一个最终将衰变,释放出一个光子,这个光子将会撞击其他激发态的原子,释放出新的光子。通过在两个镜面之间来回反弹,光子的数量会进一步增多。其中一个镜面只有部分镀银,以便让一些光线能够以典型的聚焦束的形式释放出去。

  美国波士顿市哈佛医学院的物理学家在一个活体细胞中复制了这一过程——绿色荧光蛋白(GFP)是关键所在。他们在人体肾脏细胞中插入了编码GFP的基因,使细胞合成GFP。随后,他们将一些产生了GFP的细胞置于两面镜子之间——相隔距离仅有约20微米,相当于一个细胞的宽度。

  为了发出激光,细胞中的GFP需要被另一束激光——约1毫微焦耳的低能蓝光脉冲——所激发。通常情况下,蓝光只能够使GFP在细胞中发出荧光,也就是说,随机向所有方向发光。但是在紧密的光学共振腔内,光线被来回反弹,将GFP的发射放大为一束连贯的绿光。虽然这种激光很微弱,但能被清晰地探测到,而用于生成激光的这个细胞仍然存活。研究人员在6月12日的《自然—光子学》杂志网络版上报告了这一研究成果。

  生物激光最让人着迷的地方在于,它的来源活体的。在传统类型的激光中,产生激光的介质会随着时间而退化,直至停止工作。然而,对生物激光而言,细胞能够持续合成新的GFP。参加这项研究的科学家说:“我们或许能够制造可自我修复的激光。”

  21、“太空中存在氧分子”首次得到确认

  美国每日科学网站8月2日(北京时间)报道,一个国际科研团队利用欧洲航天局的赫歇尔望远镜,在一个恒星新生区附近发现了氧分子,首次确认了氧分子在太空中的存在。

  NASA喷气推进实验室(JPL)的科学家保罗?哥德史密斯和欧空局的科学家利用赫歇尔望远镜的远红外外差接收机(HIFI),在猎户座恒星新生区附近发现了氧分子,且氧分子与氢分子的比例是1比100万。

  氧是太空中第三多的元素,也是我们身处的地球的主要组成部分,在地球的大气、海洋和岩石中无处不在,其对生命本身也具有决定性意义。天文学家猜测,其分子形式也应该大量存在于太空中,他们计划在其他恒星形成区域继续搜寻氧分子。

  22火星上的流动水证据首次被发现

  美国航空航天局的科学家在火星勘测轨道器(Mars Reconnaissance Orbiter)传回的图像上发现,火星的一些山坡上有很多黑色条纹,一直延伸到山坡下方的平原。

  这些条纹通常在相对温暖的时期出现,围绕着岩石,时分时合。但当冬季来临时,线条则会消失。

  科学家认为,这些线条可能是流动的咸水,有可能是在地下,随季节发生形态上的变化。盐成分会降低水的凝固点,只要盐浓度与地球上的海水相当,那在夏天的时候,液态水是可以出现在火星上的。

  不过,科学家也谨慎地表示,这一发现并不能成为火星上有水的直接证据。“凤凰号”曾发现火星上有水冰,但是还从未发现过有流动液体。

  新一代火星车“好奇号”即将发射,它将去火星寻找火星适宜生命存在的进一步证据(参见《环球科学》2011年第12期《奔赴火星》)。

.blkContainerSblkCon p.page,.page{ font-family: "宋体", sans-serif; text-align:center;font-size:12px;line-height:21px; color:#999; padding-top:35px;}.page span,.page a{padding:4px 8px; background:#fff;margin:0 -2px}.page a,.page a:visited{border:1px #9aafe5 solid; color:#3568b9; text-decoration:none;}.page span{border:1px #ddd solid;color:#999;}.page span.cur{background:#296cb3; font-weight:bold; color:#fff; border-color:#296cb3}.page a:hover,.page a:active{ border:1px #2e6ab1 solid;color:#363636; text-decoration:none}.icon_sina, .icon_msn, .icon_fx{ background-position: 2px -1px}.icon_msn {background-position: -25px -1px;}.icon_fx {background-position: -240px -50px;}