自豪的英文单词音标:基因工程的理论基础已经崩溃

来源:百度文库 编辑:偶看新闻 时间:2024/04/28 08:36:01

基因工程的理论基础已经崩溃

支撑今日生物工程或者转基因技术产业的基础,是半个世纪前的分子生物学理论,代表性理论是1958年由弗朗西斯.克里克首先提出的“中心法则”,其核心为,(1)生物信息在生命体内单方向流动,从DNA—>RNA—>蛋白质;但是上世纪七十年代初就发现了逆转录酶,表明还有自RNA逆转录形成DNA的过程,中心法则被证伪;(2)一个基因决定一种蛋白质,或者一种性状。最近30年来,生命科学的发展已经证明:(1)生命体内生物信息的流动不是单方向的;(2)只有在极少数情况下,一个基因决定一种蛋白质,在绝大多数情况下,一个基因参与多种蛋白质的合成;一个蛋白质的合成也是需要多个基因参与。

在“生物工程”技术大发展的30年里,生命科学领域中也有日新月异的发现。仅下面谈及的几项重大发现;就已经全面颠覆了30年前的生命科学的前沿理论。

1 可变剪接 Alternative Splicing

转基因技术刚开始时,生物学家以为,真核生物 (如植物、动物、和人) 的基因编码规律,与原核生物(如细菌) 是一样的,即:一个基因只编码一个特定的蛋白质。但是,“可变剪接”原理表明:在真核生物中,一个基因可以编码多个不同的蛋白质。但是,一直到2000年以后,对于“可变剪接”现象在真核生物中的广泛性和普遍性才被充分确认;而此时转基因农产品如抗除草剂的大豆已经“育成”,其大规模商业化生产和出口的一切准备都已就绪,在随后极短的几年时间内,就形成了史无前例的生产能力和出口规模。

2 内含子 Intron)不一定无功能

一个基因中包含内含子(Intron)和外显子(exon)。假设有一个完整信息为“inXXXXforXXmaXXXXXtion”的“基因”,其中能够编码蛋白质的序列为“information”,嵌在编码蛋白质信息的基因段之间的、非编码部分,“XXXX”或“XX”,是“内含子”,编码蛋白质部分的基因(in–for–ma-tion)叫做“外显子”。需要我们注意的是:基因组序列中90%以上的序列都是不编码基因“内含子”。

转基因专家曾经认为,内含子是基因的无用段、是“垃圾基因”。现在已没有人再这样看,因为部分内含子有重要功能。但是,时至今日大部分“内含子”的功能尚不清楚,即它们在生物的生长和发育中是否有作用、怎样发生作用,现在仍然不知道。在“转基因”的过程中忽略了内含子的作用,或者在不同程度上对内含子造成干扰、破坏,会引起什么后果?谁也不知道。

3 基因“有”次序 Gene Order

1985年之前,分子生物学家认为:基因是互为独立的一系列微单元。而更新了的基因学理论认为:基因次序并非随机的。对于“基因次序”内在联系的破坏,将是有后果的。“增加”一个基因,或“减掉”一个基因,或对某一个基因动手术,所引起的改变并不仅仅在于这一个基因本身。而现有的、功能非常有限的检测手段,仅仅是检测被“增加”进去的那一个基因本身,其他问题根本无法触及。

4 横向(水平)转基因 Horizontal Gene Transfer

在上世纪70年代和80年代,研究者普遍认为,通过“横向转基因”导致外源基因进入哺乳动物的消化道,是不会发生的。这一理解对当初评估转基因食物的“安全性”起了根本性的作用。而后来,当科学家开发了更为精密的检测技术后,才发现一个显著比例的DNA并没有被消化系统摧毁。转基因技术所采用的外源基因材料,甚至可能透过胎盘进入胚胎、转移进入成人的性细胞,由此影响到遗传。

横向转基因是生物工程技术的目标和结果。生物工程技术可以去除内含子,使横向转基因这个目标得以实现。正常植物基因中都有内含子(见上第2条),含有较长内含子的食物植物基因就不容易转移入肠道细菌中;即便偶然进入了,由于细菌没有一种除去除内含子段的功能,因而这个偶然进入的基因就不会被表达。然而,转基因作物大部分外源插入基因的编码段中是没有内含子的,有时为了使导入的外源基因在转基因植物或动物中高效表达,不仅要在编码区前使用强启动子,还要在编码区中加入内含子,这时内含子呈现这样的状态:XXXXXinformation——这会使转入细菌的外源基因更容易被表达。

于是,“横向转基因”便成了一个全新的问题,它的直接后果,就是无法预知的安全风险。

5 蛋白质错误折叠 Protein Misfolding

根据陈旧的遗传学理论,一旦氨基酸顺序确定了,蛋白质便总是会按正确的方式折叠。转基因作物的研发便是基于这样的原理。而更新了的遗传学理论指出:蛋白质折叠需要有蛋白伴侣(chaperone)来协助进行。千百万年以来,每一种植物的蛋白伴侣与它所折叠的特定的蛋白质一起,经历了漫长的进化而相互适应。当一种外源细菌基因被插入植物时,这一植物的蛋白伴侣就会遭遇完全陌生的异类蛋白,它们间将如何互动,是无法预料的。假如这种尴尬的遭遇使得蛋白质折叠发生错误,后果将是错综复杂的。疯牛病就与“蛋白质错误折叠”有关。

6 基因微阵列芯片测试 Micro-array gene chip study

基因微阵列芯片是一种相对新的技术,目前还没有被广泛应用。这项新技术应用于转基因作物的检测时发现,仅仅一个外源基因的插入,就可能导致5%受体基因改变它们本身的基因表达。]这种改变的结果,可以是农作物原有营养成分的丢失,也可以是意外毒素表达程度升高。所以,转基因作物的风险并不仅仅来自于所转的那个外源基因,问题比那一个基因更多,更大。

另外,新近发现的“第二套遗传密码”(即RNA系统,DNA-基因被称为第一套遗传密码),更揭示了基因间相互联系的高度复杂性。而30年前生物工程技术——转基因技术发端之时,生物科学界对以上问题还一无所知。