日本保温杯哪个牌子好:信号处理中涉及的基础知识

来源:百度文库 编辑:偶看新闻 时间:2024/03/29 15:49:37

1栅栏效应

  对采样信号的频谱,为提高计算效率,通常采用FFT算法进行计算,设数据点数为  N = T/dt = T.fs  则计算得到的离散频率点为  Xs(fi) , fi = i.fs/N , i = 0,1,2,…,N/2  这就相当于透过栅栏观赏风景,只能看到频谱的一部分,而其它频率点看不见,因此很可能使一部分有用的频率成分被漏掉,此种现象被称为栅栏效应.       不管是时域采样还是频域采样,都有相应的栅栏效应。只是当时域采样满足采样定理时,栅栏效应不会有什么影响。而频域采样的栅栏效应则  影响很大,“挡住”或丢失的频率成分有可能是重要的或具有特征的成分,使信号处理失去意义。减小栅栏效应可用提高采样间隔也就是频率分辨力的方法来解决。间隔小,频率分辨力高,被“挡住”或丢失的频率成分就会越少。但会增加采样点数,使计算工作量增加。解决此项矛盾可以采用如下方法:在满足采样定理的前提下,采用频率细化技术(ZOOM),亦可用把时域序列变换成频谱序列的方法。    例如505Hz正弦波信号的频谱分析来说明栅栏效应所造成的频谱计算误差。
设定采样频率fs=5120Hz,软件中默认的FFT计算点数为512,其离散频率点为
fi = i.fs/N = i.5120/512=10×i , i= 0,1,2,…,N/2
位于505Hz 位置的真实谱峰被挡住看不见,看见的只是它们在相邻频率500Hz或510Hz处能量泄漏的值。
若设 fs=2560Hz,则频率间隔df=5Hz,重复上述分析步骤,这时在505位置有谱线,我们就能得到它们的精确值。从时域看,这个条件相当于对信号进行整周期采样,实际中常用此方法来提高周期信号的频谱分析精度。 2 频谱泄露:截断信号时域上相当于是乘以了rectangular window,于是造成了频谱泄漏的问题在帖子上看到的解释:http://www.chinavib.com/forum/thread-51126-2-1.html泄漏的原因来自两方面第一输入频率不是fs/n的整数倍,因为dft只能输出在fs/n的频率点上的功率,所以当输入频率不在fs/n的整数倍时,在dft的输出上就没有与输入频率相对应得点(dft输出是离散的),那么输入频率就会泄漏到所有的输出点上,具体的泄漏分布取决于所采用的窗的连续域复利叶变换,对于没有使用窗的,相当于使用了矩形窗,矩形窗在进行连续傅立叶变换在一般的信号与系统书上都有。而对于非矩形窗,窗本身就会产生一定的泄漏,是通过加大主瓣的宽度来降低旁瓣的幅度,通常主瓣的宽度变成了矩形窗的两倍,例如当我们输入一个fs/n的整数倍的输入频率时,经过非矩形窗,dft输出会在两个fs/n的频点上有功率。见参考书:lyon的understanding DSP.
3旁瓣效应: 补零对频谱的影响:进行zero padding只是增加了数据的长度,而不是原信号的长度。就好比本来信号是一个周期的余弦信号,如果又给它补了9个周期长度的0,那么信号并不是10个周期的余弦信号,而是一个周期的余弦加一串0,补的0并没有带来新的信息。其实zero padding等价于频域的sinc函数内插,而这个sinc函数的形状(主瓣宽度)是由补0前的信号长度决定的,补0的作用只是细化了这个sinc函数,并没有改变其主瓣宽度。而频率分辨率的含义是两个频率不同的信号在频率上可分,也就要求它们不能落到一个sinc函数的主瓣上。所以,如果待分析的两个信号频率接近,而时域长度又较短,那么在频域上它们就落在一个sinc主瓣内了,补再多的0也是无济于事的。4窗为了减少频谱能量泄漏,可采用不同的截取函数对信号进行截断,截断函数称为窗函数,简称为窗。 信号截断以后产生的能量泄漏现象是必然的,因为窗函数w(t)是一个频带无限的函数,所以即使原信号x(t)是限带宽信号,而在截断以后也必然成为无限带宽的函数,即信号在频域的能量与分布被扩展了。又从采样定理可知,无论采样频率多高,只要信号一经截断,就不可避免地引起混叠,因此信号截断必然导致一些误差。   泄漏与窗函数频谱的两侧旁瓣有关,如果两侧瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱,为此,在时间域中可采用不同的窗函数来截断信号。

在加窗插值方法中,窗函数的选择非常重要。在频谱分析时要求窗函数主瓣窄、旁瓣低且跌落速度快,但对同一窗函数,这几个要求很难同时满足。目前,常用的窗函数有 20 余种。 主要包括余弦窗和卷积窗等。


汉宁(Hanning)窗
  汉宁窗又称升余弦窗,汉宁窗可以看作是3个矩形时间窗的频谱之和,或者说是 3个 sinc(t)型函数之和,而括号中的两项相对于第一个谱窗向左、右各移动了 π/T,从而使旁瓣互相抵消,消去高频干扰和漏能。可以看出,汉宁窗主瓣加宽并降低,旁瓣则显著减小,从减小泄漏观点出发,汉宁窗优于矩形窗.但汉宁窗主瓣加宽,相当于分析带宽加宽,频率分辨力下降。
一般电网信号主要含有整数次谐波, 因而常采样基于余弦窗的组合窗, 这类窗只要选取观测时间是信号周期的整数倍, 其频谱在各次整数倍谐波频率处幅值为零。 即使信号频率作小范围波动,泄漏误差也较小。窗的项数越多,主瓣宽度越大,从而引起频谱分辨力的降低。 但同时较多项数的窗函数能够产生较大的旁瓣衰减,有利于提高频谱计算精度。