丝芙兰官网代下单骗局:STM32 TIM定时器输出比较

来源:百度文库 编辑:偶看新闻 时间:2024/04/28 05:46:29

STM32开发板学习日记-[3]  TIM定时器输出比较

使用Timer进行周期定时

 

在STM32的某些应用中,用户有周期性执行某些程序的要求,使用定时器可以产生固定的时间周期,满足 这样的需求。

STM32相关特征:
STM32高级定时器TIM1、TIM8,通用定时器TIM2、TIM3、TIM4、TIM5;
定时器最大时钟72MHz,配合预分频,提供灵活的时钟周期;
每个TIM有4个独立捕获/比较通道,DMA/中断功能;
通道工作在输出比较定时模式,一个TIM至多可以提供4个不同的定时周期。

 

原理
TIM某输出/捕获通道工作在输出比较定时模式
计数器计数至比较值时产生中断,在中断中刷新捕获比较寄存器,这样在相同时间间隔后可产生下一次中断


TIM2时钟设置为36MHz,预分频设置为2,使用输出比较-翻转模式(Output Compare Toggle Mode)。

TIM2计数器时钟可表达为:TIM2 counter clock = TIMxCLK / (Prescaler +1) = 12 MHz

设置TIM2_CCR1寄存器值为32768,则CC1更新频率为TIM2计数器时钟频率除以CCR1寄存器值,为366.2 Hz。因此,TIM2通道1可产生一个频率为183.1 Hz的周期信号。

同理,根据寄存器TIM2_CCR2 、TIM2_CCR3和 TIM2_CCR4的值,TIM2通道2可产生一个频率为366.3 Hz的周期信号;TIM2通道3可产生一个频率为732.4 Hz的周期信号;TIM2通道4可产生一个频率为1464.8 Hz的周期信号。

可以通过示波器观察各路输出。

 

 

 


#include "stm32f10x_lib.h"





TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
TIM_OCInitTypeDef  TIM_OCInitStructure;
vu16 CCR1_Val = 32768;
vu16 CCR2_Val = 16384;
vu16 CCR3_Val = 8192;
vu16 CCR4_Val = 4096;
ErrorStatus HSEStartUpStatus;


void RCC_Configuration(void);
void GPIO_Configuration(void);
void NVIC_Configuration(void);
   


int main(void)
{
#ifdef DEBUG
  debug();
#endif

 
  RCC_Configuration();

 
  NVIC_Configuration();
 
 
  GPIO_Configuration();

 

 
  TIM_TimeBaseStructure.TIM_Period = 65535;   //这里必须是65535
     
  TIM_TimeBaseStructure.TIM_Prescaler = 2;      
  TIM_TimeBaseStructure.TIM_ClockDivision = 0;   
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
 
  TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);

 
  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Toggle;  //管脚输出模式:翻转(TIM输出比较触发模式)
   
  TIM_OCInitStructure.TIM_Channel = TIM_Channel_1;         
  TIM_OCInitStructure.TIM_Pulse = CCR1_Val;   //翻转周期

  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;//TIM输出比较极性低

  TIM_OCInit(TIM2, &TIM_OCInitStructure);

  TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Disable);//失能TIMx在CCR1上的预装载寄存器

 
  TIM_OCInitStructure.TIM_Channel = TIM_Channel_2;         
  TIM_OCInitStructure.TIM_Pulse = CCR2_Val; 
 
  TIM_OCInit(TIM2, &TIM_OCInitStructure);

  TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Disable);

 
  TIM_OCInitStructure.TIM_Channel = TIM_Channel_3;         
  TIM_OCInitStructure.TIM_Pulse = CCR3_Val; 
 
  TIM_OCInit(TIM2, &TIM_OCInitStructure);

  TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Disable);

 
  TIM_OCInitStructure.TIM_Channel = TIM_Channel_4;         
  TIM_OCInitStructure.TIM_Pulse = CCR4_Val; 
 
  TIM_OCInit(TIM2, &TIM_OCInitStructure);

  TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Disable);
 
 
  TIM_Cmd(TIM2, ENABLE);

 
  TIM_ITConfig(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4, ENABLE);

  while (1)
  {
 
}


void RCC_Configuration(void)
 
 
  RCC_DeInit();

 
  RCC_HSEConfig(RCC_HSE_ON);

 
  HSEStartUpStatus = RCC_WaitForHSEStartUp();

  if(HSEStartUpStatus == SUCCESS)
  {
   
    FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);

   
    FLASH_SetLatency(FLASH_Latency_2);
 
   
    RCC_HCLKConfig(RCC_SYSCLK_Div1);
 
   
    RCC_PCLK2Config(RCC_HCLK_Div1);

   
    RCC_PCLK1Config(RCC_HCLK_Div4);

   
    RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);

   
    RCC_PLLCmd(ENABLE);

   
    while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
    {
    }

   
    RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

   
    while(RCC_GetSYSCLKSource() != 0x08)
    {
    }
  }

 
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);

 
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
}


void GPIO_Configuration(void)
{
  GPIO_InitTypeDef GPIO_InitStructure;

 
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

  GPIO_Init(GPIOA, &GPIO_InitStructure);
}


void NVIC_Configuration(void)
{
  NVIC_InitTypeDef NVIC_InitStructure;
  
#ifdef  VECT_TAB_RAM 
 
  NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);
#else 
 
  NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);  
#endif
 
 
  NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQChannel;
  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; 
  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
  NVIC_Init(&NVIC_InitStructure);
}

#ifdef  DEBUG

void assert_failed(u8* file, u32 line)
{
 

  while (1)
  {
 
}
#endif

 

 

 

 

中断服务:



void TIM2_IRQHandler(void)
{
 
  if (TIM_GetITStatus(TIM2, TIM_IT_CC1) != RESET)//检查指定的TIM中断发生与否
  {
    TIM_ClearITPendingBit(TIM2, TIM_IT_CC1 );//清除TIMx的中断待处理位
 capture = TIM_GetCapture1(TIM2);
 TIM_SetCompare1(TIM2, capture + CCR1_Val );//设置TIMx自动重装载寄存器值
        //将TIM2_CC1的值增加CCR1_Val,使得下一个TIM事件也需要CCR1_Val个脉冲,

  }
 
 
  if (TIM_GetITStatus(TIM2, TIM_IT_CC2) != RESET)
  {
     TIM_ClearITPendingBit(TIM2, TIM_IT_CC2);
 capture = TIM_GetCapture2(TIM2);
    TIM_SetCompare2(TIM2, capture + CCR2_Val);
 

 
  if (TIM_GetITStatus(TIM2, TIM_IT_CC3) != RESET)
  {
    TIM_ClearITPendingBit(TIM2, TIM_IT_CC3);
 capture = TIM_GetCapture3(TIM2);
    TIM_SetCompare3(TIM2, capture + CCR3_Val);
  }

 
  if (TIM_GetITStatus(TIM2, TIM_IT_CC4) != RESET)
  {
    TIM_ClearITPendingBit(TIM2, TIM_IT_CC4);
 capture = TIM_GetCapture4(TIM2);
    TIM_SetCompare4(TIM2, capture + CCR4_Val);
  
}