下载陌陌2017最新版本:深入嵌入式系统的 BootLoader

来源:百度文库 编辑:偶看新闻 时间:2024/04/24 19:06:44
深入嵌入式系统的 BootLoader   作者:未知   来源:电子开发网    点击数:124   更新时间:2008-2-27     一、简介
  本文将从 BootLoader 的概念、BootLoader 的主要任务、BootLoader 的框架结构以及 BootLoader 的安装等四个方面来讨论嵌入式系统的 BootLoader。

  引导加载程序 。包括固化在固件 (firmware) 中的 boot 代码 ( 可选 ) ,和 Boot Loader 两大部分。
  Linux 内核 。特定于嵌入式板子的定制内核以及内核的启动参数。
  引导加载程序是系统加电后运行的第一段软件代码。
  回忆一下 PC 的体系结构我们可以知道,PC 机中的引导加载程序由 BIOS(其本质就是一段固件程序)和位于硬盘 MBR 中的OS Boot Loader(比如,LILO 和GRUB 等)一起组成。BIOS 在完成硬件检测和资源分配后,将硬盘 MBR 中的 Boot Loader 读到系统的 RAM 中,然后将控制权交给 OS Boot Loader。Boot Loader 的主要运行任务就是将内核映象从硬盘上读到 RAM 中,然后跳转到内核的入口点去运行,也即开始启动操作系统。而在嵌入式系统中,通常并没有像 BIOS 那样的固件程序(注,有的嵌入式 CPU 也会内嵌一段短小的启动程序),因此整个系统的加载启动任务就完全由 Boot Loader 来完成。比如在一个基于 ARM7TDMI core 的嵌入式系统中,系统在上电或复位时通常都从地址0x00000000 处开始执行,而在这个地址处安排的通常就是系统的 Boot Loader 程序。


二、Boot Loader 的概念
  简单地说,Boot Loader 就是在操作系统内核运行之前运行的一段小程序。通过这段小程序,我们可以初始化硬件设备、建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,以便为最终调用操作系统内核准备好正确的环境。

1. Boot Loader 所支持的 CPU 和嵌入式板
  每种不同的 CPU 体系结构都有不同的 Boot Loader。有些 Boot Loader 也支持多种体系结构的 CPU,比如 U-Boot 就同时支持 ARM 体系结构和MIPS 体系结构。除了依赖于CPU 的体系结构外,BootLoader 实际上也依赖于具体的嵌入式板级设备的配置。这也就是说,对于两块不同的嵌入式板而言,即使它们是基于同一种 CPU 而构建的,要想让运行在一块板子上的 Boot Loader 程序也能运行在另一块板子上,通常也都需要修改Boot Loader 的源程序。

2. Boot Loader 的安装媒介(Installation Medium)
  系统加电或复位后,所有的 CPU 通常都从某个由 CPU 制造商预先安排的地址上取指令。比如,基于 ARM7TDMI core 的 CPU 在复位时通常都从地址 0x00000000 取它的第一条指令。而基于 CPU 构建的嵌入式系统通常都有某种类型的固态存储设备(比如:ROM、EEPROM 或 FLASH 等)被映射到这个预先安排的地址上。因此在系统加电后,CPU 将首先执行 Boot Loader 程序。

3. 用来控制 Boot Loader 的设备或机制
  主机和目标机之间一般通过串口建立连接,Boot Loader 软件在执行时通常会通过串口来进行 I/O,比如:输出打印信息到串口,从串口读取用户控制字符等。

4. Boot Loader 的启动过程
  Boot Loader 的启动过程是单阶段(Single Stage)还是多阶段(Multi-Stage)通常多阶段的 Boot Loader 能提供更为复杂的功能,以及更好的可移植性。从固态存储设备上启动的 Boot Loader 大多都是 2 阶段的启动过程,也即启动过程可以分为 stage 1 和stage 2 两部分。而至于在 stage 1 和 stage 2 具体完成哪些任务将在下面讨论。

5. BootLoader 与主机之间进行文件传输所用的通信设备及协议
  最常见的情况就是,目标机上的 Boot Loader 通过串口与主机之间进行文件传输,传输协议通常是 xmodem/ymodem/zmodem 协议中的一种。但是,串口传输的速度是有限的,因此通过以太网连接并借助 TFTP 协议来下载文件是个更好的选择。在讨论了 BootLoader 的上述概念后,下面我们来具体看看 BootLoader 的应该完成哪些任务。

三. Boot Loader 的主要任务与典型结构框架
  在继续本节的讨论之前,首先我们做一个假定,那就是:假定内核映像与根文件系统映像都被加载到 RAM 中运行。之所以提出这样一个假设前提是因为,在嵌入式系统中内核映像与根文件系统映像也可以直接在 ROM 或 Flash 这样的固态存储设备中直接运行。但这种做法无疑是以运行速度的牺牲为代价的。
  从操作系统的角度看,Boot Loader 的总目标就是正确地调用内核来执行。另外,由于 Boot Loader 的实现依赖于 CPU 的体系结构,因此大多数 Boot Loader 都分为 stage1 和 stage2 两大部分。依赖于 CPU 体系结构的代码,比如设备初始化代码等,通常都放在 stage1 中,而且通常都用汇编语言来实现,以达到短小精悍的目的。
  而 stage2 则通常用C语言来实现,这样可以实现给复杂的功能,而且代码会具有更好的可读性和可移植性。
  Boot Loader 的 stage1 通常包括以下步骤(以执行的先后顺序):

  硬件设备初始化。
  为加载 Boot Loader 的 stage2 准备 RAM 空间。
  拷贝 Boot Loader 的 stage2 到 RAM 空间中。
  设置好堆栈。
  跳转到 stage2 的 C 入口点。
  Boot Loader 的 stage2 通常包括以下步骤(以执行的先后顺序):

  初始化本阶段要使用到的硬件设备。
  检测系统内存映射(memory map)。
  将 kernel 映像和根文件系统映像从 flash 上读到 RAM 空间中。
  为内核设置启动参数。
  调用内核。
3.1 Boot Loader 的 stage1
3.1.1基本的硬件初始化
  这是 Boot Loader 一开始就执行的操作,其目的是为 stage2 的执行以及随后的 kernel 的执行准备好一些基本的硬件环境。它通常包括以下步骤(以执行的先后顺序):

  屏蔽所有的中断。为中断提供服务通常是 OS 设备驱动程序的责任,因此在 BootLoader 的执行全过程中可以不必响  应任何中断。中断屏蔽可以通过写CPU 的中断屏蔽寄存器或状态寄存器(比如ARM 的 CPSR 寄存器)来完成。
  设置 CPU 的速度和时钟频率。
  RAM 初始化。包括正确地设置系统的内存控制器的功能寄存器以及各内存库控制寄存器等。
  初始化 LED。典型地,通过 GPIO 来驱动 LED,其目的是表明系统的状态是 OK 还是 Error。如果板子上没有 LED,那么也可以通过初始化 UART 向串口打印 Boot Loader 的 Logo 字符信息来完成这一点。
关闭 CPU 内部指令/数据 cache。
3.1.2 为加载 stage2 准备 RAM 空间
  为了获得更快的执行速度,通常把 stage2 加载到 RAM 空间中来执行,因此必须为加载Boot Loader 的 stage2 准备好一段可用的 RAM 空间范围。由于 stage2 通常是 C 语言执行代码,因此在考虑空间大小时,除了 stage2 可执行映象的大小外,还必须把堆栈空间也考虑进来。此外,空间大小最好是 memory page 大小(通常是 4KB)的倍数。一般而言,1M的 RAM 空间已经足够了。具体的地址范围可以任意安排,比如 blob 就将它的 stage2 可执行映像安排到从系统 RAM 起始地址 0xc0200000 开始的1M空间内执行。
  但是,将 stage2 安排到整个 RAM 空间的最顶 1MB(也即(RamEnd-1MB) - RamEnd)是一种值得推荐的方法。
为了后面的叙述方便,这里把所安排的 RAM 空间范围的大小记为:stage2_size(字节) ,把起始地址和终止地址分别记为:stage2_start 和 stage2_end(这两个地址均以 4 字节边界对齐)。因此: stage2_end=stage2_start+stage2_size
另外,还必须确保所安排的地址范围的的确确是可读写的 RAM 空间,因此,必须对你所安排的地址范围进行测试。
  具体的测试方法可以采用类似于 blob 的方法,也即:以 memory page 为被测试单位,测试每个 memory page 开始的两个字是否是可读写的。为了后面叙述的方便,我们记这个检测算法为:test_mempage,其具体步骤如下:

  先保存 memory page 一开始两个字的内容。
  向这两个字中写入任意的数字。比如:向第一个字写入 0x55,第 2 个字写入 0xaa。
  然后,立即将这两个字的内容读回。显然,我们读到的内容应该分别是 0x55 和 0xaa。如果不是,则说明这个 memory page 所占据的地址范围不是一段有效的 RAM 空间。
  再向这两个字中写入任意的数字。比如:向第一个字写入 0xaa,第 2 个字中写入0x55。
然后,立即将这两个字的内容立即读回。显然,我们读到的内容应该分别是 0xaa和 0x55。如果不是,则说明这个 memory page 所占据的地址范围不是一段有效的 RAM空间。
  恢复这两个字的原始内容。测试完毕。
  为了得到一段干净的 RAM 空间范围,我们也可以将所安排的 RAM 空间范围进行清零操作。

3.1.3 拷贝 stage2 到 RAM 中
  拷贝时要确定两点:
(1) stage2 的可执行映象在固态存储设备的存放起始地址和终止地址;
(2) RAM 空间的起始地址。

3.1.4 设置堆栈指针 sp
  堆栈指针的设置是为了执行 C 语言代码作好准备。通常我们可以把 sp 的值设置为(stage2_end-4),也即在 3.1.2 节所安排的那个 1MB 的 RAM 空间的最顶端(堆栈向下生长)。
  此外,在设置堆栈指针 sp 之前,也可以关闭 led 灯,以提示用户我们准备跳转到 stage2。
  经过上述这些执行步骤后,系统的物理内存布局应该如下图2所示。

3.1.5 跳转到 stage2 的 C 入口点
  在上述一切都就绪后,就可以跳转到 Boot Loader 的 stage2 去执行了。
  比如,在 ARM 系统中,这可以通过修改 PC 寄存器为合适的地址来实现。

3.2 Boot Loader 的stage2
  正如前面所说,stage2 的代码通常用 C 语言来实现,以便于实现更复杂的功能和取得更好的代码可读性和可移植性。
但是与普通 C 语言应用程序不同的是,在编译和链接boot loader 这样的程序时,我们不能使用 glibc 库中的任何支持函数。其原因是显而易见的。这就给我们带来一个问题,那就是从那里跳转进 main() 函数呢?直接把 main() 函数的起始地址作为整个 stage2 执行映像的入口点或许是最直接的想法。但是这样做有两个缺点:
1)无法通过main() 函数传递函数参数;
2)无法处理 main() 函数返回的情况。
一种更为巧妙的方法是利用 trampoline(弹簧床)的概念。也即,用汇编语言写一段trampoline 小程序,并将这段 trampoline 小程序来作为 stage2 可执行映象的执行入口点。然后我们可以在 trampoline 汇编小程序中用 CPU 跳转指令跳入 main() 函数中去执行;而当 main() 函数返回时,CPU 执行路径显然再次回到我们的 trampoline 程序。简而言之,这种方法的思想就是:用这段 trampoline 小程序来作为main() 函数的外部包裹(external wrapper)。
下面给出一个简单的 trampoline 程序示例(来自blob):
.text
.globl _trampoline
_trampoline:
bl main
/* if main ever returns we just call it again */
b _trampoline

可以看出,当 main() 函数返回后,我们又用一条跳转指令重新执行 trampoline 程序,当然也就重新执行 main() 函数,这也就是 trampoline(弹簧床)一词的意思所在。

3.2.1初始化本阶段要使用到的硬件设备
  这通常包括:
(1)初始化至少一个串口,以便和终端用户进行 I/O 输出信息;
(2)初始化计时器等。
  在初始化这些设备之前,也可以重新把 LED 灯点亮,以表明我们已经进入 main() 函数执行。
  设备初始化完成后,可以输出一些打印信息,程序名字字符串、版本号等。

3.2.2 检测系统的内存映射(memory map)
  所谓内存映射就是指在整个 4GB 物理地址空间中有哪些地址范围被分配用来寻址系统的RAM 单元。
  比如,在 SA-1100 CPU 中,从 0xC000,0000 开始的512M地址空间被用作系统的 RAM 地址空间,而在 Samsung S3C44B0X CPU 中,从 0x0c00,0000 到 0x1000,0000 之间的64M地址空间被用作系统的 RAM 地址空间。虽然 CPU 通常预留出一大段足够的地址空间给系统 RAM,但是在搭建具体的嵌入式系统时却不一定会实现 CPU 预留的全部 RAM 地址空间。也就是说,具体的嵌入式系统往往只把 CPU 预留的全部 RAM 地址空间中的一部分映射到 RAM 单元上,而让剩下的那部分预留 RAM 地址空间处于未使用状态。
  由于上述这个事实,因此 Boot Loader 的 stage2 必须在它想干点什么 (比如,将存储在 flash 上的内核映像读到 RAM 空间中) 之前检测整个系统的内存映射情况,也即它必须知道CPU 预留的全部 RAM 地址空间中的哪些被真正映射到 RAM 地址单元,哪些是处于 "unused" 状态的。

(1) 内存映射的描述
可以用如下数据结构来描述 RAM 地址空间中的一段连续(continuous)的地址范围:
typedef struct memory_area_struct {
u32 start; /* the base address of the memory region */
u32 size; /* the byte number of the memory region */
int used;
} memory_area_t;
这段 RAM 地址空间中的连续地址范围可以处于两种状态之一:
(1)used=1,则说明这段连续的地址范围已被实现,也即真正地被映射到 RAM 单元上。
(2)used=0,则说明这段连续的地址范围并未被系统所实现,而是处于未使用状态。
基于上述 memory_area_t 数据结构,整个 CPU 预留的 RAM 地址空间可以用一个 memory_area_t 类型的数组来表示,如下所示:
memory_area_t memory_map[NUM_MEM_AREAS] = {
[0 ... (NUM_MEM_AREAS - 1)] = {
.start = 0,
.size = 0,
.used = 0
},
};

(2) 内存映射的检测
下面我们给出一个可用来检测整个 RAM 地址空间内存映射情况的简单而有效的算法:
/* 数组初始化 */
for(i = 0; i < NUM_MEM_AREAS; i++)
memory_map[i].used = 0;
/* first write a 0 to all memory locations */
for(addr = MEM_START; addr < MEM_END; addr += PAGE_SIZE)
* (u32 *)addr = 0;
for(i = 0, addr = MEM_START; addr < MEM_END; addr += PAGE_SIZE) {
/*
* 检测从基地址 MEM_START+i*PAGE_SIZE 开始,大小为
* PAGE_SIZE 的地址空间是否是有效的RAM地址空间。
*/
调用3.1.2节中的算法test_mempage();
if ( current memory page isnot a valid ram page) {
/* no RAM here */
if(memory_map[i].used )
i++;
continue;
}
/*
* 当前页已经是一个被映射到 RAM 的有效地址范围
* 但是还要看看当前页是否只是 4GB 地址空间中某个地址页的别名?
*/
if(* (u32 *)addr != 0) { /* alias? */
/* 这个内存页是 4GB 地址空间中某个地址页的别名 */
if ( memory_map[i].used )
i++;
continue;
}
/*
* 当前页已经是一个被映射到 RAM 的有效地址范围
* 而且它也不是4GB 地址空间中某个地址页的别名。
*/
if (memory_map[i].used == 0) {
memory_map[i].start = addr;
memory_map[i].size = PAGE_SIZE;
memory_map[i].used = 1;
} else {
memory_map[i].size += PAGE_SIZE;
}
} /* end of for (…) */
在用上述算法检测完系统的内存映射情况后,Boot Loader 也可以将内存映射的详细信息打印到串口。

3.2.3 加载内核映像和根文件系统映像
(1)规划内存占用的布局
这里包括两个方面:

  内核映像所占用的内存范围;
  根文件系统所占用的内存范围。
  在规划内存占用的布局时,主要考虑基地址和映像的大小两个方面。
  对于内核映像,一般将其拷贝到从(MEM_START+0x8000) 这个基地址开始的大约1MB大小的内存范围内(嵌入式 Linux 的内核一般都不超过 1MB)。为什么要把从 MEM_START 到MEM_START+0x8000 这段 32KB 大小的内存空出来呢?这是因为 Linux 内核要在这段内存中放置一些全局数据结构,如:启动参数和内核页表等信息。
  而对于根文件系统映像,则一般将其拷贝到 MEM_START+0x0010,0000 开始的地方。如果用 Ramdisk 作为根文件系统映像,则其解压后的大小一般是1MB。

(2)从 Flash 上拷贝
  由于像 ARM 这样的嵌入式 CPU 通常都是在统一的内存地址空间中寻址 Flash 等固态存储设备的,因此从 Flash 上读取数据与从 RAM 单元中读取数据并没有什么不同。用一个简单的循环就可以完成从 Flash 设备上拷贝映像的工作:
while(count) {
*dest++ = *src++; /* they are all aligned with word boundary */
count -= 4; /* byte number */
};

3.2.4 设置内核的启动参数
  应该说,在将内核映像和根文件系统映像拷贝到 RAM 空间中后,就可以准备启动 Linux 内核了。
  但是在调用内核之前,应该作一步准备工作,即:设置 Linux 内核的启动参数。
  Linux 2.4.x 以后的内核都期望以标记列表(tagged list)的形式来传递启动参数。启动参数标记列表以标记 ATAG_CORE 开始,以标记 ATAG_NONE 结束。每个标记由标识被传递参数的 tag_header 结构以及随后的参数值数据结构来组成。

  数据结构 tag 和 tag_ header 定义在 Linux 内核源码的include/asm/setup.h 头文件中:
/* The list ends with an ATAG_NONE node. */
#define ATAG_NONE 0x00000000

struct tag_header {
u32 size; /* 注意,这里size是字数为单位的 */
u32 tag;
};
……
struct tag {
struct tag_header hdr;
union {
struct tag_core core;
struct tag_mem32 mem;
struct tag_videotext videotext;
struct tag_ramdisk ramdisk;
struct tag_initrd initrd;
struct tag_serialnr serialnr;
struct tag_revision revision;
struct tag_videolfb videolfb;
struct tag_cmdline cmdline;
/*
* Acorn specific
*/
struct tag_acorn acorn;
/*
* DC21285 specific
*/
struct tag_memclk memclk;
} u;
};
在嵌入式 Linux 系统中,通常需要由 Boot Loader 设置的常见启动参数有:ATAG_CORE、ATAG_MEM、ATAG_CMDLINE、ATAG_RAMDISK、ATAG_INITRD等。
比如,设置 ATAG_CORE 的代码如下:
params = (struct tag *)BOOT_PARAMS;
params->hdr.tag = ATAG_CORE;
params->hdr.size = tag_size(tag_core);
params->u.core.flags = 0;
params->u.core.pagesize = 0;
params->u.core.rootdev = 0;
params = tag_next(params);
其中,BOOT_PARAMS 表示内核启动参数在内存中的起始基地址,指针 params 是一个 struct tag 类型的指针。
宏 tag_next() 将以指向当前标记的指针为参数,计算紧临当前标记的下一个标记的起始地址。

注意,内核的根文件系统所在的设备ID就是在这里设置的。

下面是设置内存映射情况的示例代码:
for(i = 0; i < NUM_MEM_AREAS; i++) {
if(memory_map[i].used) {
params->hdr.tag = ATAG_MEM;
params->hdr.size = tag_size(tag_mem32);
params->u.mem.start = memory_map[i].start;
params->u.mem.size = memory_map[i].size;
params = tag_next(params);
}
}
可以看出,在 memory_map[]数组中,每一个有效的内存段都对应一个 ATAG_MEM 参数标记。

Linux 内核在启动时可以以命令行参数的形式来接收信息,利用这一点我们可以向内核提供那些内核不
能自己检测的硬件参数信息,或者重载(override)内核自己检测到的信息。
比如,我们用这样一个命令行参数字符串"console=ttyS0,115200n8"来通知内核以ttyS0 作为控制台,且串口采用 "115200bps、无奇偶校验、8位数据位"这样的设置。下面是一段设置调用内核命令行参数字符串的示例代码:
char *p;
/* eat leading white space */
for(p = commandline; *p == ‘ ‘; p++)
;
/* skip non-existent command lines so the kernel will still
* use its default command line.
*/
if(*p == ‘‘)
return;
params->hdr.tag = ATAG_CMDLINE;
params->hdr.size = (sizeof(struct tag_header) + strlen(p) + 1 + 4) >> 2;
strcpy(params->u.cmdline.cmdline, p);
params = tag_next(params);
请注意在上述代码中,设置 tag_header 的大小时,必须包括字符串的终止符‘‘,此外还要将字节数向上圆整4个字节,因为 tag_header 结构中的size 成员表示的是字数。

下面是设置 ATAG_INITRD 的示例代码,它告诉内核在 RAM 中的什么地方可以找到 initrd 映象(压缩格式)以及它的大小:
params->hdr.tag = ATAG_INITRD2;
params->hdr.size = tag_size(tag_initrd);
params->u.initrd.start = RAMDISK_RAM_BASE;
params->u.initrd.size = INITRD_LEN;
params = tag_next(params);

下面是设置 ATAG_RAMDISK 的示例代码,它告诉内核解压后的 Ramdisk 有多大(单位是KB):
params->hdr.tag = ATAG_RAMDISK;
params->hdr.size = tag_size(tag_ramdisk);
params->u.ramdisk.start = 0;
params->u.ramdisk.size = RAMDISK_SIZE; /* 请注意,单位是KB */
params->u.ramdisk.flags = 1; /* automatically load ramdisk */
params = tag_next(params);
最后,设置 ATAG_NONE 标记,结束整个启动参数列表:

static void setup_end_tag(void)
{
params->hdr.tag = ATAG_NONE;
params->hdr.size = 0;
}

3.2.5 调用内核
  Boot Loader 调用 Linux 内核的方法是直接跳转到内核的第一条指令处,
  也即直接跳转到 MEM_START+0x8000 地址处。在跳转时,下列条件要满足:

CPU 寄存器的设置:
R0=0;
R1=机器类型 ID;关于 Machine Type Number,可以参见 linux/arch/arm/tools/mach-types。
R2=启动参数标记列表在 RAM 中起始基地址;
CPU 模式:
必须禁止中断(IRQs和FIQs);
CPU 必须 SVC 模式;
Cache 和 MMU 的设置:
MMU 必须关闭;
指令 Cache 可以打开也可以关闭;
数据 Cache 必须关闭;
如果用 C 语言,可以像下列示例代码这样来调用内核:
void (*theKernel)(int zero, int arch, u32 params_addr) = (void (*)(int, int,u32))KERNEL_RAM_BASE;
……
theKernel(0, ARCH_NUMBER, (u32) kernel_params_start);
注意,theKernel()函数调用应该永远不返回的。如果这个调用返回,则说明出错。

四. 关于串口终端
  在 boot loader 程序的设计与实现中,没有什么能够比从串口终端正确地收到打印信息能更令人激动了。此外,向串口终端打印信息也是一个非常重要而又有效的调试手段。但是,我们经常会碰到串口终端显示乱码或根本没有显示的问题。造成这个问题主要有两种原因:

  boot loader 对串口的初始化设置不正确。
  运行在 host 端的终端仿真程序对串口的设置不正确,这包括:波特率、奇偶校验、数据位和停止位等方面的设置。
  此外,有时也会碰到这样的问题,那就是:在 boot loader 的运行过程中我们可以正确地向串口终端输出信息,但当 boot loader 启动内核后却无法看到内核的启动输出信息。对这一问题的原因可以从以下几个方面来考虑:

  首先请确认你的内核在编译时配置了对串口终端的支持,并配置了正确的串口驱动程序。
你的 boot loader 对串口的初始化设置可能会和内核对串口的初始化设置不一致。此外,对于诸如 s3c44b0x 这样的 CPU,CPU 时钟频率的设置也会影响串口,因此如果boot loader 和内核对其 CPU 时钟频率的设置不一致,也会使串口终端无法正确显示信息。
  最后,还要确认 boot loader 所用的内核基地址必须和内核映像在编译时所用的运行基地址一致,尤其是对于 uClinux 而言。假设你的内核映像在编译时用的基地址是0xc0008000,但你的 boot loader 却将它加载到 0xc0010000 处去执行,那么内核映像当然不能正确地执行了。
五. 结束语
  Boot Loader 的设计与实现是一个非常复杂的过程。如果不能从串口收到那激动人心的"uncompressing linux.................. done, booting the kernel……"内核启动信息,恐怕谁也不能说:"嗨,我的 boot loader 已经成功地转起来了!"。

基于Nandflash的Bootloader的设计与实现   作者:桂林电子科技大学 郝卫东 刘溯奇   来源:21ic    点击数:268   更新时间:2007-12-13      摘要:Bootloader是系统上电或复位后首先运行的一段代码,是连接操作系统和硬件的桥梁,负责初始化硬件和引导操作系统等。目前已有很多通用的Bootloader,但是如何根据特定的嵌入式平台,移植自己的引导程序是一个重点和难点。文章详细说明了从Nandflash引导操作系统要完成的主要任务和实现方法,并给出了在S3C2410上实现Nandflash启动的试验结果。
关键词:Bootloader; 移植;Nandflash;S3C2410

0 引言

Bootloader通常称为系统的引导加载程序,是系统加电或复位后执行的第一段代码[ 1 ]。一般它只在系统启动时运行非常短的时间,但对于嵌入式系统来说,这是一个非常重要的系统组成部分。通过这段小程序,可以初始化硬件设备、建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,以便为调用操作系统内核准备好正确的环境,并同时提供基本输入、输出系统监控功能和程序调试功能。

Bootloader是严重地依赖于硬件而实现的。每种不同体系结构的处理器都有不同的Bootloader。除了依赖于处理器的体系结构以外,Bootloader实际上也依赖于具体的嵌入式板级设备的配置,也就是说,对于两块不同的嵌入式板而言,即使它们是基于同一种处理器而构建的,要想让运行在一块板子上的Bootloader程序也能运行在另一块板子上,通常也都需要修改与目标硬件相关的代码。因此有必要分析Bootloader,并理解和找出其中的原理和规律,就其特定的嵌入式系统,移植或开发属于自己的Bootloader。

1 系统硬件平台简介
   本系统采用的是SamSung公司的S3C2410处理器[ 2 ],它是专门为移动手持设备提供的高性价比和高性能的嵌入式微处理器解决方案。其内核是ARM920T,最高能工作在202.8MHz,为了减少系统总成本和减少外围器件,它集成了如下部件:分别为16KB指令和数据Cahce、1个LCD控制器、SDRAM控制器、NANDFLASH控制器、3通道UART、4通道DMA、4个具有PWM功能的计时器和1个内部时钟、8通道10位ADC、触摸屏接口、I²S总线接口,2个USB主机接口、1个USB设备接口,2个SPI接口、SD和MMC卡接口、看门狗定时器、117位通用IO口、24位外部中断源、8通道10位AD控制器等。本文涉及的S3C2410开发板的硬件结构如图1所示,本文主要阐述从Nandflash引导操作系统要完成的主要任务和实现方法,至于从Norflash引导操作系统,不打算具体实现。
 
图1  S3C2410硬件结构图

2 存储空间分布和映射图
硬件平台的Nandflash(型号是:K9F1208U0M[ 3])空间为64MB,SDRAM(型号是:HY57V561620[ 4 ],32Mx2)空间为64M(0x30000000-0x33ffffff),采用如图2所示的存储空间分布图,因为Nandflash只能存储程序,无法运行程序。为了能够从Nandflash启动,上电复位时,S3C2410通过硬件逻辑把Nandflash的前4KB的内容复制到片内SRAM中,而片内SRAM被映射到地址0x0,这样就可以从地址0x0处取到有效指令,开始执行bootloader,完成把Nandflash中的内核代码复制到sdram中等工作。
 
图2   引导代码和操作系统内核在Nandflash和存储空间中的分布情况

3 Bootloader的设计流程
Bootloader引导程序是硬件上电复位后首先运行的代码,由它来加载嵌入式操作系统。然后由操作系统接管整个系统,进行进程管理、内存管理、磁盘管理和各个外设管理等工作。 BootLoader是操作系统内核运行之前的一段自举程序,用来初始化硬件设备、改变处理器运行模式和重组中断向量,建立内存空间的映射图,将系统的软硬件环境带到一个由用户定制的特定状态,然后加载操作系统内核。从操作系统的角度来看,Bootloader的总目标就是正确地调用内核来执行。Bootloader一般分为stage1和stage2两大部分[ 5 ],对于依赖于CPU体系结构的代码,比如设备初始化代码等,通常都放在stage1中,而且通常都用汇编语言来实现,以达到短小精悍的目的,也就是前面说的启动代码。而stage2则通常用C语言来实现,这样可以实现复杂的功能,而且代码会具有更好的可读性和可移植性。

3.1 Bootloader的stage1
这部分代码必须首先完成一些基本的硬件初始化。为stage2 的执行以及随后的内核的执行准备好一些基本的硬件环境。Bootloader 的stage1 一般通用的内容包括:
(1)设置中断和异常向量;(2)禁止看门狗;(3) 屏蔽所有的中断, 在Boot Loader 的执行全过程中可以不必响应任何中断, 中断屏蔽可以通过写CPU 的中断屏蔽寄存器或状态寄存器CPSR 寄存器来完成;(4) 设置CPU 的速度和时钟频率;(5) 对RAM进行初始化, 包括正确设置系统的内存控制器的功能寄存器等;(6)初始化LED或UART,就是通过GPIO来驱动LED,也可以通过初始化UART向串口打印Bootloader的调试信息来表明系统的状态是OK还是ERROR,以便跟踪系统运行情况;(7)关闭CPU 内部指令/数据高速缓存(cache);(8)为加载Bootloader的stage2准备RAM空间;(9)设置好堆栈;(10)跳转到stage2的C入口点;其流程图如图3所示。 
 
图3  Bootloader的stage1的实现

3.2 Bootloader的stage2
为了让程序跳入C 语言的“main”函数, 我们采用直接跳转到“main”函数的方法, 实现代码如下:
b   Main 
进入main 函数后即可以开始本阶段stage2 的初始化任务, 这包括:
(1) 如果在stage1没有初始化UART,这时候至少初始化一个串口, 以便和终端用户进行交互,当然也可以继续点亮或熄灭LED来判断程序执行情况;
(2) 修改时钟频率;
(3) 使能指令Cache;
(5) 从串口中打印一些必要的交互信息,了解系统状态;
(6) 初始化中断, 包括屏蔽中断, 清除中断悬挂标志, 初始化中断向量表, 注册需要的中断处理函数等;
(8)打印版本、时间等信息,并从Nandflash复制内核到SDRAM中;
(9)修改指针,直接跳到内核在SDRAM中的首地址处,至此,完成了Bootloader的全部运行加载工作;

下面是main()函数和从Nandflash复制内核到SDRAM中的ReadImageFromNandflash()函数的具体实现,但省略了一些具体细节,包括从串口打印的启动、交互、调试信息和一些具体函数的实现。一些具体函数的实现可以参考三星评估版源代码。
void Main(void)
{
   JumpAddr=0x30200000; //拷贝内核到sdram中的起始地址,也是内核开始执行的地址
    ChangeClockDivider(1,1);     //1:2:4
    ChangeMPllValue(0x5c,0x1,0x1);   // FCLK=202.8MHz
    MMU_EnableICache();   //使能指令Cache
    Uart_Init();      // 初始化串口
Port_Init();      //初始化I/O口
NF_Init();        //初始化Nandflash控制器
NF_ReadID();      //读取Nandflash存储器ID号
ReadImageFromNandflash();//把存储在Nandflash中的内核拷贝到SDRAM中
rINTMSK=BIT_ALLMSK; //屏蔽所有中断
Launch(JumpAddr); //跳转到sdram中内核开始处,并运行内核
}
从Nandflash(Flash是K9F1208U0M)拷贝内核到SDRAM的函数具体实现如下:
void ReadImageFromNandflash(void)
{
U8 Image_Buf[512];
    U32 Sram_Space=0;
    U32 j,k, numberblock;
    static U32 i, SECTOR_SIZE=512;
    static U8 isbad;
    volatile U32 IMAGE_BASE=0x30200000;  //内核在sdram中运行的开始地址
    rINTMSK = BIT_ALLMSK;    //屏蔽所有中断
    i=2; //从第2个block开始拷贝内核,第0个用于存储本文的bootloader,第1个没用到
numberblock=2047; //拷贝多少个block到sdram中,视内核大小设置此值
    while(1)
    {
     nextblock:
       isbad=0;
       isbad=NF_IsBadBlock(i);    //判断正在拷贝的block是否是坏block
       if (isbad)  //是坏block,就进行相应的处理;否则就忽略此处,进行下面的拷贝
       { 
         i=i+1;    //调整,指向下一个block
         isbad=0;
         if(i>= numberblock)     //判断是否拷贝完了所需的block
         {
            Launch(JumpAddr);  //拷贝完了所需的block,就跳到sdram中内核开始处
}
goto nextblock;    
       }
       for(k=0;k<32;k++)     //1 block=32 pages
       {  // FMD_ReadSector()函数实现从Nandflash存储器中读取数据到数据缓冲区中
          FMD_ReadSector(i, (U8 *)&Image_Buf, k);
          for (j=0;j          {  //从数据缓冲区中拷贝到sdram中
             *((U8 *)(IMAGE_BASE+Sram_Space+j))=Image_Buf[j]; 
           }
            Sram_Space=Sram_Space+SECTOR_SIZE; //调整sdram中的偏移地址
         }
        i=i+1; //调整,指向下一个block
        if(i>= numberblock)    //判断是否拷贝完了所需的block
        {
           Launch(JumpAddr);  //拷贝完了所需的block,就跳到sdram中内核开始处
         }
    }
}

4 试验结果
由于三星公司的S3C2410集成了Nandflash控制器,它通过硬件逻辑把Nandflash的前4KB内容,即把Bootloader复制到片内sram中,并被映射到地址0x0处。通过跳线设置默认从nandflash启动,那么,系统每次上电或复位后,首先开始运行的就是Bootloader。使用ADS1.2集成开发环境建立Bootloader应用工程,添加必需的文件并设置好编译环境,如Bootloader的RO_Base设置为0x0,RW_Base设置为0x33ff0000等,调试并最后生成可执行二进制文件,通过JTAG接口把Bootloader烧写到Nandflash的第0个block地址开始处,通过usb下载工具把操作系统烧写到第2个block地址开始处,复位启动系统运行后的结果如图4所示,该程序用于基于uCOS操作系统的图像采集系统的引导。用同样的方法烧写不同的操作系统内核应用程序,试验结果每一次表明:Bootloader运行良好,启动加载内核快,且简单、实用、可靠。
 
图4  Bootloader引导运行的系统

5 结论
Bootloader的设计与实现是一个非常复杂的过程,因此要根据具体的硬件和软件需求分析来进行移植或设计。本文设计的Bootloader完成的主要功能包括:试验板硬件的初始化、串口初始化、时钟频率修改以及从Nandflash复制操作系统到SDRAM中运行等,并通过PC机上的超级终端显示了正确的启动运行信息,且可执行代码只有3K左右。因此,本文所详细描述的Bootloader启动运行的全过程,对理解、设计和移植Bootloader具有一定的参考意义。

参考文献:
[1] 徐宇清,黄彦平等.S3C44B0X的Bootloader技术分析[J]. 上海理工大学学报,2005,27(4):369-372.
[2]SAMSUNG公司. Samsung s3c2410a User Manual v1.0.pdf.
[3]SAMSUNG公司.K9F1208U0M-YCB0.pdf.
[4] http://www.icpdf.com/pdf/HY57V561620.htm. HY57V561620(L)T.pdf.
[5]张嵛编著.32位嵌入式系统硬件设计与调试.北京:机械工业出版社,2005,7.

[作者简介] 
郝卫东(1964-),男,汉族,河北定县人,桂林电子科技大学高级工程师,硕士研究生导师,主要从事机器人技术和医疗电子方面的研究。

刘溯奇(1977-),男,汉族,广西桂林人,广西桂林电子科技大学机器人中心硕士研究生,主要从事机器人技术、嵌入式系统应用方面的研究。