bethells 塔斯曼:Matlab概率统计工具箱(2)最常用

来源:百度文库 编辑:偶看新闻 时间:2024/05/03 05:26:40

4.5.4 方差
命令 求样本方差
函数 var
格式 D=var(X) %var(X)=,若X为向量,则返回向量的样本方差.
D=var(A) %A为矩阵,则D为A的列向量的样本方差构成的行向量.
D=var(X, 1) %返回向量(矩阵)X的简单方差(即置前因子为的方差)
D=var(X, w) %返回向量(矩阵)X的以w为权重的方差
命令 求标准差
函数 std
格式 std(X) %返回向量(矩阵)X的样本标准差(置前因子为)即:
std(X,1) %返回向量(矩阵)X的标准差(置前因子为)
std(X, 0) %与std (X)相同
std(X, flag, dim) %返回向量(矩阵)中维数为dim的标准差值,其中flag=0时,置前因子为;否则置前因子为.
例4-41 求下列样本的样本方差和样本标准差,方差和标准差
14.70 15.21 14.90 15.32 15.32
解:
>>X=[14.7 15.21 14.9 14.91 15.32 15.32];
>>DX=var(X,1) %方差
DX =
0.0559
>>sigma=std(X,1) %标准差
sigma =
0.2364
>>DX1=var(X) %样本方差
DX1 =
0.0671
>>sigma1=std(X) %样本标准差
sigma1 =
0.2590
命令 忽略NaN的标准差
函数 nanstd
格式 y = nanstd(X) %若X为含有元素NaN的向量,则返回除NaN外的元素的标准差,若X为含元素NaN的矩阵,则返回各列除NaN外的标准差构成的向量.
例4-42
>> M=magic(3) %产生3阶魔方阵
M =
8 1 6
3 5 7
4 9 2
>> M([1 6 8])=[NaN NaN NaN] %替换3阶魔方阵中第1,6,8个元素为NaN
M =
NaN 1 6
3 5 NaN
4 NaN 2
>> y=nanstd(M) %求忽略NaN的各列向量的标准差
y =
0.7071 2.8284 2.8284
>> X=[1 5]; %忽略NaN的第2列元素
>> y2=std(X) %验证第2列忽略NaN元素的标准差
y2 =
2.8284
命令 样本的偏斜度
函数 skewness
格式 y = skewness(X) %X为向量,返回X的元素的偏斜度;X为矩阵,返回X各列元素的偏斜度构成的行向量.
y = skewness(X,flag) %flag=0表示偏斜纠正,flag=1(默认)表示偏斜不纠正.
说明偏斜度样本数据关于均值不对称的一个测度,如果偏斜度为负,说明均值左边的数据比均值右边的数据更散;如果偏斜度为正,说明均值右边的数据比均值左边的数据更散,因而正态分布的偏斜度为 0;偏斜度是这样定义的:
其中:μ为x的均值,σ为x的标准差,E(.)为期望值算子
例4-43
>> X=randn([5,4])
X =
0.2944 0.8580 -0.3999 0.6686
-1.3362 1.2540 0.6900 1.1908
0.7143 -1.5937 0.8156 -1.2025
1.6236 -1.4410 0.7119 -0.0198
-0.6918 0.5711 1.2902 -0.1567
>> y=skewness(X)
y =
-0.0040 -0.3136 -0.8865 -0.2652
>> y=skewness(X,0)
y =
-0.0059 -0.4674 -1.3216 -0.3954
 

admin 2007-11-29 20:48
4.5.5 常见分布的期望和方差
命令 均匀分布(连续)的期望和方差
函数 unifstat
格式 [M,V] = unifstat(A,B) %A,B为标量时,就是区间上均匀分布的期望和方差,A,B也可为向量或矩阵,则M,V也是向量或矩阵.
例4-44
>>a = 1:6; b = 2.*a;
>>[M,V] = unifstat(a,b)
M =
1.5000 3.0000 4.5000 6.0000 7.5000 9.0000
V =
0.0833 0.3333 0.7500 1.3333 2.0833 3.0000
命令 正态分布的期望和方差
函数 normstat
格式 [M,V] = normstat(MU,SIGMA) %MU,SIGMA可为标量也可为向量或矩阵,则M=MU,V=SIGMA2.
例4-45
>> n=1:4;
>> [M,V]=normstat(n'*n,n'*n)
M =
1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16
V =
1 4 9 16
4 16 36 64
9 36 81 144
16 64 144 256
命令 二项分布的均值和方差
函数 binostat
格式 [M,V] = binostat(N,P) %N,P为二项分布的两个参数,可为标量也可为向量或矩阵.
例4-46
>>n = logspace(1,5,5)
n =
10 100 1000 10000 100000
>>[M,V] = binostat(n,1./n)
M =
1 1 1 1 1
V =
0.9000 0.9900 0.9990 0.9999 1.0000
>>[m,v] = binostat(n,1/2)
m =
5 50 500 5000 50000
v =
1.0e+04 *
0.0003 0.0025 0.0250 0.2500 2.5000
常见分布的期望和方差见下表4-6.
表4-6 常见分布的均值和方差
函数名
调用形式
注 释
unifstat
[M,V]=unifstat ( a, b)
均匀分布(连续)的期望和方差,M为期望,V为方差
unidstat
[M,V]=unidstat (n)
均匀分布(离散)的期望和方差
expstat
[M,V]=expstat (p, Lambda)
指数分布的期望和方差
normstat
[M,V]=normstat(mu,sigma)
正态分布的期望和方差
chi2stat
[M,V]=chi2stat (x, n)
卡方分布的期望和方差
tstat
[M,V]=tstat ( n)
t分布的期望和方差
fstat
[M,V]=fstat ( n1, n2)
F分布的期望和方差
gamstat
[M,V]=gamstat ( a, b)
分布的期望和方差
betastat
[M,V]=betastat ( a, b)
分布的期望和方差
lognstat
[M,V]=lognstat ( mu, sigma)
对数正态分布的期望和方差
nbinstat
[M,V]=nbinstat ( R, P)
负二项式分布的期望和方差
ncfstat
[M,V]=ncfstat ( n1, n2, delta)
非中心F分布的期望和方差
nctstat
[M,V]=nctstat ( n, delta)
非中心t分布的期望和方差
ncx2stat
[M,V]=ncx2stat ( n, delta)
非中心卡方分布的期望和方差
raylstat
[M,V]=raylstat ( b)
瑞利分布的期望和方差
Weibstat
[M,V]=weibstat ( a, b)
韦伯分布的期望和方差
Binostat
[M,V]=binostat (n,p)
二项分布的期望和方差
Geostat
[M,V]=geostat (p)
几何分布的期望和方差
hygestat
[M,V]=hygestat (M,K,N)
超几何分布的期望和方差
Poisstat
[M,V]=poisstat (Lambda)
泊松分布的期望和方差
4.5.6 协方差与相关系数
命令 协方差
函数 cov
格式 cov(X) %求向量X的协方差
cov(A) %求矩阵A的协方差矩阵,该协方差矩阵的对角线元素是A的各列的方差,即:var(A)=diag(cov(A)).
cov(X,Y) %X,Y为等长列向量,等同于cov([X Y]).
例4-47
>> X=[0 -1 1]';Y=[1 2 2]';
>> C1=cov(X) %X的协方差
C1 =
1
>> C2=cov(X,Y) %列向量X,Y的协方差矩阵,对角线元素为各列向量的方差
C2 =
1.0000 0
0 0.3333
>> A=[1 2 3;4 0 -1;1 7 3]
A =
1 2 3
4 0 -1
1 7 3
>> C1=cov(A) %求矩阵A的协方差矩阵
C1 =
3.0000 -4.5000 -4.0000
-4.5000 13.0000 6.0000
-4.0000 6.0000 5.3333
>> C2=var(A(:,1)) %求A的第1列向量的方差
C2 =
3
>> C3=var(A(:,2)) %求A的第2列向量的方差
C3 =
13
>> C4=var(A(:,3))
C4 =
5.3333
命令 相关系数
函数 corrcoef
格式 corrcoef(X,Y) %返回列向量X,Y的相关系数,等同于corrcoef([X Y]).
corrcoef (A) %返回矩阵A的列向量的相关系数矩阵
例4-48
>> A=[1 2 3;4 0 -1;1 3 9]
A =
1 2 3
4 0 -1
1 3 9
>> C1=corrcoef(A) %求矩阵A的相关系数矩阵
C1 =
1.0000 -0.9449 -0.8030
-0.9449 1.0000 0.9538
-0.8030 0.9538 1.0000
>> C1=corrcoef(A(:,2),A(:,3)) %求A的第2列与第3列列向量的相关系数矩阵
C1 =
1.0000 0.9538
0.9538 1.0000
4.6 统计作图
4.6.1 正整数的频率表
命令 正整数的频率表
函数 tabulate
格式 table = tabulate(X) %X为正整数构成的向量,返回3列:第1列中包含X的值第2列为这些值的个数,第3列为这些值的频率.
例4-49
>> A=[1 2 2 5 6 3 8]
A =
1 2 2 5 6 3 8
>> tabulate(A)
Value Count Percent
1 1 14.29%
2 2 28.57%
3 1 14.29%
4 0 0.00%
5 1 14.29%
6 1 14.29%
7 0 0.00%
8 1 14.29%
4.6.2 经验累积分布函数图形
函数 cdfplot
格式 cdfplot(X) %作样本X(向量)的累积分布函数图形
h = cdfplot(X) %h表示曲线的环柄
[h,stats] = cdfplot(X) %stats表示样本的一些特征
例4-50
>> X=normrnd (0,1,50,1);
>> [h,stats]=cdfplot(X)
h =
3.0013
stats =
min: -1.8740 %样本最小值
max: 1.6924 %最大值
mean: 0.0565 %平均值
median: 0.1032 %中间值
std: 0.7559 %样本标准差
4.6.3 最小二乘拟合直线
函数 lsline
格式 lsline %最小二乘拟合直线
h = lsline %h为直线的句柄
例4-51
>> X = [2 3.4 5.6 8 11 12.3 13.8 16 18.8 19.9]';
>> plot(X,'+')
>> lsline
4.6.4 绘制正态分布概率图形
函数 normplot
格式 normplot(X) %若X为向量,则显示正态分布概率图形,若X为矩阵,则显示每一列的正态分布概率图形.
h = normplot(X) %返回绘图直线的句柄
说明 样本数据在图中用"+"显示;如果数据来自正态分布,则图形显示为直线,而其它分布可能在图中产生弯曲.
例4-53
>> X=normrnd(0,1,50,1);
>> normplot(X)
图4-12
4.6.5 绘制威布尔(Weibull)概率图形
函数 weibplot
格式 weibplot(X) %若X为向量,则显示威布尔(Weibull)概率图形,若X为矩阵,则显示每一列的威布尔概率图形.
h = weibplot(X) %返回绘图直线的柄
说明绘制威布尔(Weibull)概率图形的目的是用图解法估计来自威布尔分布的数据X,如果X是威布尔分布数据,其图形是直线的,否则图形中可能产生弯曲.
例4-54
>> r = weibrnd(1.2,1.5,50,1);
>> weibplot(r)
图4-13
4.6.6 样本数据的盒图
函数 boxplot
格式 boxplot(X) %产生矩阵X的每一列的盒图和"须"图,"须"是从盒的尾部延伸出来,并表示盒外数据长度的线,如果"须"的外面没有数据,则在"须"的底部有一个点.
boxplot(X,notch) %当notch=1时,产生一凹盒图,notch=0时产生一矩箱图.
boxplot(X,notch,'sym') %sym表示图形符号,默认值为"+".
boxplot(X,notch,'sym',vert) %当vert=0时,生成水平盒图,vert=1时,生成竖直盒图(默认值vert=1).
boxplot(X,notch,'sym',vert,whis) %whis定义"须"图的长度,默认值为1.5,若whis=0则boxplot函数通过绘制sym符号图来显示盒外的所有数据值.
例4-55
>>x1 = normrnd(5,1,100,1);
>>x2 = normrnd(6,1,100,1);
>>x = [x1 x2];
>> boxplot(x,1,'g+',1,0)
图4-14
4.6.7 给当前图形加一条参考线
函数 refline
格式 refline(slope,intercept) % slope表示直线斜率,intercept表示截距
refline(slope) slope=[a b],图中加一条直线:y=b+ax.
例4-56
>>y = [3.2 2.6 3.1 3.4 2.4 2.9 3.0 3.3 3.2 2.1 2.6]';
>>plot(y,'+')
>>refline(0,3)
图4-15
4.6.8 在当前图形中加入一条多项式曲线
函数 refcurve
格式 h = refcurve(p) %在图中加入一条多项式曲线,h为曲线的环柄,p为多项式系数向量,p=[p1,p2, p3,…,pn],其中p1为最高幂项系数.
例4-57 火箭的高度与时间图形,加入一条理论高度曲线,火箭初速为100m/秒.
>>h = [85 162 230 289 339 381 413 437 452 458 456 440 400 356];
>>plot(h,'+')
>>refcurve([-4.9 100 0])
图4-16
4.6.9 样本的概率图形
函数 capaplot
格式 p = capaplot(data,specs) %data为所给样本数据,specs指定范围,p表示在指定范围内的概率.
说明 该函数返回来自于估计分布的随机变量落在指定范围内的概率
例4-58
>> data=normrnd (0,1,30,1);
>> p=capaplot(data,[-2,2])
p =
0.9199
图4-17
4.6.10 附加有正态密度曲线的直方图
函数 histfit
格式 histfit(data) %data为向量,返回直方图
和正态曲线.
histfit(data,nbins) % nbins指定bar的个数,
缺省时为data中数据个数的平方根.
例4-59
>>r = normrnd (10,1,100,1);
>>histfit(r)
4.6.11 在指定的界线之间画正态密度曲线
函数 normspec
格式 p = normspec(specs,mu,sigma) %specs指定界线,mu,sigma为正态分布的参数p 为样本落在上,下界之间的概率.
例4-60
>>normspec([10 Inf],11.5,1.25)
图4-19
 

admin 2007-11-29 20:50
4.7 参数估计
4.7.1 常见分布的参数估计
命令 β分布的参数a和b的最大似然估计值和置信区间
函数 betafit
格式 PHAT=betafit(X)
[PHAT,PCI]=betafit(X,ALPHA)
说明 PHAT为样本X的β分布的参数a和b的估计量
PCI为样本X的β分布参数a和b的置信区间,是一个2×2矩阵,其第1例为参数a的置信下界和上界,第2例为b的置信下界和上界,ALPHA为显著水平,(1-α)×100%为置信度.
例4-61 随机产生100个β分布数据,相应的分布参数真值为4和3.则4和3的最大似然估计值和置信度为99%的置信区间为:
解:
>>X = betarnd (4,3,100,1); %产生100个β分布的随机数
>>[PHAT,PCI] = betafit(X,0.01) %求置信度为99%的置信区间和参数a,b的估计值
结果显示
PHAT =
3.9010 2.6193
PCI =
2.5244 1.7488
5.2776 3.4898
说明 估计值3.9010的置信区间是[2.5244 5.2776],估计值2.6193的置信区间是[1.7488 3.4898].
命令 正态分布的参数估计
函数 normfit
格式 [muhat,sigmahat,muci,sigmaci] = normfit(X)
[muhat,sigmahat,muci,sigmaci] = normfit(X,alpha)
说明 muhat,sigmahat分别为正态分布的参数μ和σ的估计值,muci,sigmaci分别为置信区间,其置信度为;alpha给出显著水平α,缺省时默认为0.05,即置信度为95%.
例4-62 有两组(每组100个元素)正态随机数据,其均值为10,均方差为2,求95%的置信区间和参数估计值.
解:>>r = normrnd (10,2,100,2); %产生两列正态随机数据
>>[mu,sigma,muci,sigmaci] = normfit(r)
则结果为
mu =
10.1455 10.0527 %各列的均值的估计值
sigma =
1.9072 2.1256 %各列的均方差的估计值
muci =
9.7652 9.6288
10.5258 10.4766
sigmaci =
1.6745 1.8663
2.2155 2.4693
说明 muci,sigmaci中各列分别为原随机数据各列估计值的置信区间,置信度为95%.
例4-63 分别使用金球和铂球测定引力常数
(1)用金球测定观察值为:6.683 6.681 6.676 6.678 6.679 6.672
(2)用铂球测定观察值为:6.661 6.661 6.667 6.667 6.664
设测定值总体为,μ和σ为未知.对(1),(2)两种情况分别求μ和σ的置信度为0.9的置信区间.
解:建立M文件:LX0833.m
X=[6.683 6.681 6.676 6.678 6.679 6.672];
Y=[6.661 6.661 6.667 6.667 6.664];
[mu,sigma,muci,sigmaci]=normfit(X,0.1) %金球测定的估计
[MU,SIGMA,MUCI,SIGMACI]=normfit(Y,0.1) %铂球测定的估计
运行后结果显示如下:
mu =
6.6782
sigma =
0.0039
muci =
6.6750
6.6813
sigmaci =
0.0026
0.0081
MU =
6.6640
SIGMA =
0.0030
MUCI =
6.6611
6.6669
SIGMACI =
0.0019
0.0071
由上可知,金球测定的μ估计值为6.6782,置信区间为[6.6750,6.6813];
σ的估计值为0.0039,置信区间为[0.0026,0.0081].
泊球测定的μ估计值为6.6640,置信区间为[6.6611,6.6669];
σ的估计值为0.0030,置信区间为[0.0019,0.0071].
命令 利用mle函数进行参数估计
函数 mle
格式 phat=mle %返回用dist指定分布的最大似然估计值
[phat, pci]=mle %置信度为95%
[phat, pci]=mle %置信度由alpha确定
[phat, pci]=mle %仅用于二项分布,pl为试验次数.
说明 dist为分布函数名,如:beta(分布),bino(二项分布)等,X为数据样本,alpha为显著水平α,为置信度.
例4-64
>> X=binornd(20,0.75) %产生二项分布的随机数
X =
16
>> [p,pci]=mle('bino',X,0.05,20) %求概率的估计值和置信区间,置信度为95%
p =
0.8000
pci =
0.5634
0.9427
常用分布的参数估计函数
表4-7 参数估计函数表
函数名
调 用 形 式
函 数 说 明
binofit
PHAT= binofit(X, N)
[PHAT, PCI] = binofit(X,N)
[PHAT, PCI]= binofit (X, N, ALPHA)
二项分布的概率的最大似然估计
置信度为95%的参数估计和置信区间
返回水平α的参数估计和置信区间
poissfit
Lambdahat=poissfit(X)
[Lambdahat, Lambdaci] = poissfit(X)
[Lambdahat, Lambdaci]= poissfit (X, ALPHA)
泊松分布的参数的最大似然估计
置信度为95%的参数估计和置信区间
返回水平α的λ参数和置信区间
normfit
[muhat,sigmahat,muci,sigmaci] = normfit(X)
[muhat,sigmahat,muci,sigmaci] = normfit(X, ALPHA)
正态分布的最大似然估计,置信度为95%
返回水平α的期望,方差值和置信区间
betafit
PHAT =betafit (X)
[PHAT, PCI]= betafit (X, ALPHA)
返回β分布参数a和 b的最大似然估计
返回最大似然估计值和水平α的置信区间
unifit
[ahat,bhat] = unifit(X)
[ahat,bhat,ACI,BCI] = unifit(X)
[ahat,bhat,ACI,BCI]=unifit(X, ALPHA)
均匀分布参数的最大似然估计
置信度为95%的参数估计和置信区间
返回水平α的参数估计和置信区间
expfit
muhat =expfit(X)
[muhat,muci] = expfit(X)
[muhat,muci] = expfit(X,alpha)
指数分布参数的最大似然估计
置信度为95%的参数估计和置信区间
返回水平α的参数估计和置信区间
gamfit
phat =gamfit(X)
[phat,pci] = gamfit(X)
[phat,pci] = gamfit(X,alpha)
γ分布参数的最大似然估计
置信度为95%的参数估计和置信区间
返回最大似然估计值和水平α的置信区间
weibfit
phat = weibfit(X)
[phat,pci] = weibfit(X)
[phat,pci] = weibfit(X,alpha)
韦伯分布参数的最大似然估计
置信度为95%的参数估计和置信区间
返回水平α的参数估计及其区间估计
Mle
phat = mle('dist',data)
[phat,pci] = mle('dist',data)
[phat,pci] = mle('dist',data,alpha)
[phat,pci] = mle('dist',data,alpha,p1)
分布函数名为dist的最大似然估计
置信度为95%的参数估计和置信区间
返回水平α的最大似然估计值和置信区间
仅用于二项分布,pl为试验总次数
说明各函数返回已给数据向量X的参数最大似然估计值和置信度为(1-α)×100%的置信区间.α的默认值为0.05,即置信度为95%.
4.7.2 非线性模型置信区间预测
命令 高斯—牛顿法的非线性最小二乘数据拟合
函数 nlinfit
格式 beta = nlinfit(X,y,FUN,beta0) %返回在FUN中描述的非线性函数的系数.FUN为用户提供形如的函数,该函数返回已给初始参数估计值β和自变量X的y的预测值.
[beta,r,J] = nlinfit(X,y,FUN,beta0) %beta为拟合系数,r为残差,J为Jacobi矩阵,beta0为初始预测值.
说明 若X为矩阵,则X的每一列为自变量的取值,y是一个相应的列向量.如果FUN中使用了@,则表示函数的柄.
例4-65 调用MATLAB提供的数据文件reaction.mat
>>load reaction
>>betafit = nlinfit(reactants,rate,@hougen,beta)
betafit =
1.2526
0.0628
0.0400
0.1124
1.1914
命令 非线性模型的参数估计的置信区间
函数 nlparci
格式 ci = nlparci(beta,r,J) %返回置信度为95%的置信区间,beta为非线性最小二乘法估计的参数值,r为残差,J为Jacobian矩阵.nlparci可以用nlinfit函数的输出作为其输入.
例4-66 调用MATLAB中的数据reaction.
>>load reaction
>>[beta,resids,J] = nlinfit(reactants,rate,'hougen',beta)
beta =
1.2526
0.0628
0.0400
0.1124
1.1914
resids =
0.1321
-0.1642
-0.0909
0.0310
0.1142
0.0498
-0.0262
0.3115
-0.0292
0.1096
0.0716
-0.1501
-0.3026
J =
6.8739 -90.6536 -57.8640 -1.9288 0.1614
3.4454 -48.5357 -13.6240 -1.7030 0.3034
5.3563 -41.2099 -26.3042 -10.5217 1.5095
1.6950 0.1091 0.0186 0.0279 1.7913
2.2967 -35.5658 -6.0537 -0.7567 0.2023
11.8670 -89.5655 -170.1745 -8.9566 0.4400
4.4973 -14.4262 -11.5409 -9.3770 2.5744
4.1831 -41.7896 -16.8937 -5.7794 1.0082
11.8286 -51.3721 -154.1164 -27.7410 1.5001
9.1514 -25.5948 -76.7844 -30.7138 2.5790
3.3373 0.0900 0.0720 0.1080 3.5269
9.3663 -102.0611 -107.4327 -3.5811 0.2200
4.7512 -24.4631 -16.3087 -10.3002 2.1141
>>ci = nlparci(beta,resids,J)
ci =
-0.7467 3.2519
-0.0377 0.1632
-0.0312 0.1113
-0.0609 0.2857
-0.7381 3.1208
命令 非线性拟合和显示交互图形
函数 nlintool
格式 nlintool(x,y,FUN,beta0) %返回数据(x,y)的非线性曲线的预测图形,它用2条红色曲线预测全局置信区间.beta0为参数的初始预测值,置信度为95%.
nlintool(x,y,FUN,beta0,alpha) %置信度为(1-alpha)×100%
例4-67 调用MATLAB数据
>> load reaction
>> nlintool(reactants,rate,'hougen',beta)
图4-20
命令 非线性模型置信区间预测
函数 nlpredci
格式 ypred = nlpredci(FUN,inputs,beta,r,J) % ypred 为预测值,FUN与前面相同,beta为给出的适当参数,r为残差,J为Jacobian矩阵,inputs为非线性函数中的独立变量的矩阵值.
[ypred,delta] = nlpredci(FUN,inputs,beta,r,J) %delta为非线性最小二乘法估计的置信区间长度的一半,当r长度超过beta的长度并且J的列满秩时,置信区间的计算是有效的.[ypred-delta,ypred+delta]为置信度为95%的不同步置信区间.
ypred = nlpredci(FUN,inputs,beta,r,J,alpha,'simopt','predopt') %控制置信区间的类型,置信度为100(1-alpha)%.'simopt' = 'on' 或'off' (默认值)分别表示同步或不同步置信区间.'predopt'='curve' (默认值) 表示输入函数值的置信区间, 'predopt'='observation' 表示新响应值的置信区间.nlpredci可以用nlinfit函数的输出作为其输入.
例4-68 续前例,在[100 300 80]处的预测函数值ypred和置信区间一半宽度delta
>> load reaction
>> [beta,resids,J] = nlinfit(reactants,rate,@hougen,beta);
>> [ypred,delta] = nlpredci(@hougen,[100 300 80],beta,resids,J)
结果为:
ypred =
10.9113
delta =
0.3195
命令 非负最小二乘
函数 nnls(该函数已被函数lsnonneg代替,在6.0版中使用nnls将产生警告信息)
格式 x = nnls(A,b) %最小二乘法判断方程A×x=b的解,返回在x≥0的条件下使得最小的向量x,其中A和b必须为实矩阵或向量.
x = nnls(A,b,tol) % tol为指定的误差
[x,w] = nnls(A,b) %当x中元素时,,当时.
[x,w] = nnls(A,b,tol)
例4- 69
>> A =[0.0372 0.2869;0.6861 0.7071;0.6233 0.6245;0.6344 0.6170];
>> b=[0.8587 0.1781 0.0747 0.8405]';
>> x=nnls(A,b)
Warning: NNLS is obsolete and has been replaced by LSQNONNEG.
NNLS now calls LSQNONNEG which uses the following syntax:
[X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA]
=lsqnonneg(A,b,X0, Options) ;
Use OPTIMSET to define optimization options, or type
'edit nnls' to view the code used here. NNLS will be
removed in the future; please use NNLS with the new syntax.
x =
0
0.6929
命令 有非负限制的最小二乘
函数 lsqnonneg
格式 x = lsqnonneg(C,d) %返回在x≥0的条件下使得最小的向量x,其中C和d必须为实矩阵或向量.
x = lsqnonneg(C,d,x0) % x0为初始点,x0≥0
x = lsqnonneg(C,d,x0,options) %options为指定的优化参数,参见options函数.
[x,resnorm] = lsqnonneg(…) %resnorm表示norm(C*x-d).^2的残差
[x,resnorm,residual] = lsqnonneg(…) %residual表示C*x-d的残差
例4- 70
>> A =[0.0372 0.2869;0.6861 0.7071;0.6233 0.6245;0.6344 0.6170];
>> b=[0.8587 0.1781 0.0747 0.8405]';
>> [x,resnorm,residual] = lsqnonneg(A,b)
x =
0
0.6929
resnorm =
0.8315
residual =
0.6599
-0.3119
-0.3580
0.4130
4.7.3 对数似然函数
命令 负分布的对数似然函数
函数 Betalike
格式 logL=betalike(params,data) %返回负分布的对数似然函数,params为向量[a, b],是分布的参数,data为样本数据.
[logL,info]=betalike(params,data) %返回Fisher逆信息矩阵info.如果params 中输入的参数是极大似然估计值,那么info的对角元素为相应参数的渐近方差.
说明 betalike是分布最大似然估计的实用函数.似然函数假设数据样本中,所有的元素相互独立.因为betalike返回负对数似然函数,用fmins函数最小化betalike与最大似然估计的功能是相同的.
例4-71 本例所取的数据是随机产生的分布数据.
>>r = betarnd(3,3,100,1);
>>[logL,info] = betalike([2.1234,3.4567],r)
logL =
-12.4340
info =
0.1185 0.1364
0.1364 0.2061
命令 负分布的对数似然估计
函数 Gamlike
格式 logL=gamlike(params,data) %返回由给定样本数据data确定的分布的参数为params(即[a,b])的负对数似然函数值
[logL,info]=gamlike(params,data) %返回Fisher逆信息矩阵info.如果params中输入的参数是极大似然估计值,那么info的对角元素为相应参数的渐近方差.
说明 gamlike是分布的最大似然估计函数.因为gamlike返回对数似然函数值,故用fmins函数将gamlike最小化后,其结果与最大似然估计是相同的.
例4-72
>>r=gamrnd(2,3,100,1);
>>[logL,info]=gamlike([2.4212, 2.5320],r)
logL =
275.4602
info =
0.0453 -0.0538
-0.0538 0.0867
命令 负正态分布的对数似然函数
函数 normlike
格式 logL=normlike(params,data) %返回由给定样本数据data确定的,负正态分布的,参数为params(即[mu,sigma])的对数似然函数值.
[logL,info]=normlike(params,data) %返回Fisher逆信息矩阵info.如果params中输入的参数是极大似然估计值,那么info的对角元素为相应参数的渐近方差.
命令 威布尔分布的对数似然函数
函数 Weiblike
格式 logL = weiblike(params,data) %返回由给定样本数据data确定的,威布尔分布的,参数为params(即[a,b])的对数似然函数值.
[logL,info]=weiblike(params,data) %返回Fisher逆信息矩阵info.如果params中输入的参数是极大似然估计值,那么info的对角元素为相应参数的渐近方差.
说明 威布尔分布的负对数似然函数定义为
例4-73
>>r=weibrnd(0.4,0.98,100,1);
>>[logL,info]=weiblike([0.1342,0.9876],r)
logL =
237.6682
info =
0.0004 -0.0002
-0.0002 0.0078


本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/huangzj239/archive/2010/04/10/5465392.aspx