字母涂鸦素材图片:干细胞、全能干细胞、造血干细胞、克隆

来源:百度文库 编辑:偶看新闻 时间:2024/04/28 00:44:56

干细胞

 

干细胞(stem cells, SC)

  是一类具有自我复制能力(self-renewing)的多潜能细胞,在一定条件下,它可以分化成多种功能细胞。

  干细胞有两种分类方法,一是根据干细胞所处的发育阶段分为胚胎干细胞(embryonic stem cell,ES细胞)和成体干细胞(somatic stem cell)。第二种分类方法是根据干细胞的发育潜能分为三类:全能干细胞(totipotent stem cell,TSC)、多能干细胞(pluripotent stem cell)和单能干细胞(unipotent stem cell)。胚胎干细胞的发育等级较高,是全能干细胞,而成体干细胞的发育等级较低,是多能或单能干细胞。

  相关例子:1988年Neta等首次报告了肿瘤坏死因子(TNF-a)的辐射防护作用,但TNF-a对促进受照小鼠造血功能重建的作用目前国内报道不多,笔者使用重组人TNF-a照射前20小时腹腔给药,研究其对受致死剂量照射小鼠辐射防护的效果和促进受亚致死剂量照射小鼠造血干细胞和造血细胞恢复的作用,并探讨TNF-a抗放作用的机理。注:此文发表于《中华放射与防护杂志》1997,17(4):233(《应用写作》2000年第2期第33页)

   干细胞(Stem Cell)是一种未充分分化,尚不成熟的细胞,具有再生各种组织器官和人体的潜在功能,医学界称之为“万用细胞”。

  干细胞是一类具有自我更新和分化潜能的细胞。它包括胚胎干细胞和成体干细胞。干细胞的发育受多种内在机制和微环境因素的影响。目前人类胚胎干细胞已可成功地在体外培养。最新研究发现,成体干细胞可以横向分化为其他类型的细胞和组织,为干细胞的广泛应用提供了基础。

  在胚胎的发生发育中,单个受精卵可以分裂发育为多细胞的组织或器官。在成年动物中,正常的生理代谢或病理损伤也会引起组织或器官的修复再生。胚胎的分化形成和成年组织的再生是干细胞进一步分化的结果。胚胎干细胞是全能的,具有分化为几乎全部组织和器官的能力。而成年组织或器官内的干细胞一般认为具有组织特异性,只能分化成特定的细胞或组织。

  然而,这个观点目前受到了挑战。

  最新的研究表明,组织特异性干细胞同样具有分化成其他细胞或组织的潜能,这为干细胞的应用开创了更广泛的空间。

  干细胞具有自我更新能力(Self-renewing),能够产生高度分化的功能细胞。干细胞按照生存阶段分为胚胎干细胞和成体干细胞。

  ·1.1 胚胎干细胞

   胚胎干细胞(Embryonic Stem cell, ES细胞)。

  胚胎干细胞当受精卵分裂发育成囊胚时,内层细胞团(Inner Cell Mass)的细胞即为胚胎干细胞。胚胎干细胞具有全能性,可以自我更新并具有分化为体内所有组织的能力。早在1970年Martin Evans已从小鼠中分离出胚胎干细胞并在体外进行培养。而人的胚胎干细胞的体外培养直到最近才获得成功。

  进一步说,胚胎干细胞(ES细胞)是一种高度未分化细胞。它具有发育的全能性,能分化出成体动物的所有组织和器官,包括生殖细胞。研究和利用ES细胞是当前生物工程领域的核心问题之一。ES细胞的研究可追溯到上世纪五十年代,由于畸胎瘤干细胞(EC细胞)的发现开始了ES细胞的生物学研究历程。

  目前许多研究工作都是以小鼠ES细胞为研究对象展开的,如:德美医学小组在去年成功的向试验鼠体内移植了由ES细胞培养出的神经胶质细胞。此后,密苏里的研究人员通过鼠胚细胞移植技术,使瘫痪的猫恢复了部分肢体活动能力。随着ES细胞的研究日益深入,生命科学家对人类ES细胞的了解迈入了一个新的阶段。在98年末,两个研究小组成功的培养出人类ES细胞,保持了ES细胞分化为各种体细胞的全能性。这样就使科学家利用人类ES细胞治疗各种疾病成为可能。然而,人类ES 细胞的研究工作引起了全世界范围内的很大争议,出于社会伦理学方面的原因,有些国家甚至明令禁止进行人类ES细胞研究。无论从基础研究角度来讲还是从临床应用方面来看,人类ES细胞带给人类的益处远远大于在伦理方面可能造成的负面影响,因此要求展开人类ES细胞研究的呼声也一浪高似一浪。

  ·1.2 成体干细胞

  成年动物的许多组织和器官,比如表皮和造血系统,具有修复和再生的能力。成体干细胞在其中起着关键的作用。在特定条件下,成体干细胞或者产生新的干细胞,或者按一定的程序分化,形成新的功能细胞,从而使组织和器官保持生长和衰退的动态平衡。过去认为成体干细胞主要包括上皮干细胞和造血干细胞。最近研究表明,以往认为不能再生的神经组织仍然包含神经干细胞,说明成体干细胞普遍存在,问题是如何寻找和分离各种组织特异性干细胞。成体干细胞经常位于特定的微环境中。微环境中的间质细胞能够产生一系列生长因子或配体,与干细胞相互作用,控制干细胞的更新和分化。

  ·1.3 造血干细胞

  造血干细胞是体内各种血细胞的唯一来源,它主要存在于骨髓、外周血、脐带血中。今年年初,协和医大血液学研究所的庞文新又在肌肉组织中发现了具有造血潜能的干细胞。造血干细胞的移植是治疗血液系统疾病、先天性遗传疾病以及多发性和转移性恶性肿瘤疾病的最有效方法。

  在临床治疗中,造血干细胞应用较早,在20世纪五十年代,临床上就开始应用骨髓移植(BMT)方法来治疗血液系统疾病。到八十年代末,外周血干细胞移植(PBSCT)技术逐渐推广开来,绝大多数为自体外周血干细胞移植(APBSCT),在提高治疗有效率和缩短疗程方面优于常规治疗,且效果令人满意。与两者相比,脐血干细胞移植的长处在于无来源的限制,对HLA配型要求不高,不易受病毒或肿瘤的污染。

  在今年初,东北地区首例脐血干细胞移植成功,又为中国造血干细胞移植技术注入新的活力。随着脐血干细胞移植技术的不断完善,它可能会代替目前APBSCT的地位,为全世界更多的血液病及恶性肿瘤的患者带来福音

  ·1.4 神经干细胞

  神经干细胞关于神经干细胞研究起步较晚,由于分离神经干细胞所需的胎儿脑组织较难取材,加之胚胎细胞研究的争议尚未平息,神经干细胞的研究仍处于初级阶段。理论上讲,任何一种中枢神经系统疾病都可归结为神经干细胞功能的紊乱。脑和脊髓由于血脑屏障的存在使之在干细胞移植到中枢神经系统后不会产生免疫排斥反应,如:给帕金森氏综合症患者的脑内移植含有多巴胺生成细胞的神经干细胞,可治愈部分患者症状。除此之外,神经干细胞的功能还可延伸到药物检测方面,对判断药物有效性、毒性有一定的作用。实际上,到目前为止,人们对干细胞的了解仍存在许多盲区。2000年年初美国研究人员无意中发现在胰腺中存有干细胞;加拿大研究人员在人、鼠、牛的视网膜中发现了始终处于“休眠状态的干细胞” ;有些科学家证实骨髓干细胞可发育成肝细胞,脑干细胞可发育成血细胞。

  随着干细胞研究领域向深度和广度不断扩展,人们对干细胞的了解也将更加全面。21世纪是生命科学的时代,也是为人类的健康长寿创造世界奇迹的时代,干细胞的应用将有广阔前景。

  ·1.5肌肉干细胞(muscle stem cell)

  可发育分化为成肌细胞(myoblasts),后者可互相融合成为多核的肌纤维,形成骨骼肌最基本的结构。

2.【基础应用】

  干细胞的调控是指给出适当的因子条件,对干细胞的增值和分化进行调控,使之向指定的方向发展。

  ·2.1 内源性调控

   干细胞自身有许多调控因子可对外界信号起反应从而调节其增殖和分化,包括调节细胞不对称分裂的蛋白,控制基因表达的核因子等。另外,干细胞在终末分化之前所进行的分裂次数也受到细胞内调控因子的制约。

  1)细胞内蛋白对干细胞分裂的调控

   干细胞分裂可能产生新的干细胞或分化的功能细胞。这种分化的不对称是由于细胞本身成分的不均等分配和周围环境的作用造成的。细胞的结构蛋白,特别是细胞骨架成分对细胞的发育非常重要。如在果蝇卵巢中,调控干细胞不对称分裂的是一种称为收缩体的细胞器,包含有许多调节蛋白,如膜收缩蛋白和细胞周期素A。收缩体与纺锤体的结合决定了干细胞分裂的部位,从而把维持干细胞性状所必需的成分保留在子代干细胞中。

  2)转录因子的调控

   在脊椎动物中,转录因子对干细胞分化的调节非常重要。比如在胚胎干细胞的发生中,转录因子Oct4是必需的。Oct4是一种哺乳动物早期胚胎细胞表达的转录因子,它诱导表达的靶基因产物是FGF-4等生长因子,能够通过生长因子的旁分泌作用调节干细胞以及周围滋养层的进一步分化。Oct4缺失突变的胚胎只能发育到囊胚期,其内部细胞不能发育成内层细胞团 [1]。另外白血病抑制因子(LIF)对培养的小鼠ES细胞的自我更新有促进作用,而对人的成体干细胞无作用,说明不同种属间的转录调控是不完全一致的。又如Tcf/Lef转录因子家族对上皮干细胞的分化非常重要。Tcf/Lef是Wnt信号通路的中间介质,当与β-Catenin形成转录复合物后,促使角质细胞转化为多能状态并分化为毛囊。

  ·2.2 外源性调控

  除内源性调控外,干细胞的分化还可受到其周围组织及细胞外基质等外源性因素的影响。

  1)分泌因子

  间质细胞能够分泌许多因子,维持干细胞的增殖,分化和存活。有两类因子在不同组织甚至不同种属中都发挥重要作用,它们是TGFβ家族和Wnt信号通路。比如TGF家族中至少有两个成员能够调节神经嵴干细胞的分化。最近研究发现,胶质细胞衍生的神经营养因子(GDNF)不仅能够促进多种神经元的存活和分化,还对精原细胞的再生和分化有决定作用。GDNF缺失的小鼠表现为干细胞数量的减少,而GDNF的过度表达导致未分化的精原细胞的累积[3]。Wnts的作用机制是通过阻止β-Catenin分解从而激活Tcf/Lef介导的转录,促进干细胞的分化。比如在线虫卵裂球的分裂中,邻近细胞诱导的Wnt信号通路能够控制纺锤体的起始和内胚层的分化。

  2)膜蛋白介导的细胞间的相互作用

  有些信号是通过细胞-细胞的直接接触起作用的。β-Catenin就是一种介导细胞粘附连接的结构成分。除此之外,穿膜蛋白Notch及其配体Delta或Jagged也对干细胞分化有重要影响。在果蝇的感觉器官前体细胞,脊椎动物的胚胎及成年组织包括视网膜神经上皮、骨骼肌和血液系统中,Notch信号都起着非常重要的作用。当Notch与其配体结合时,干细胞进行非分化性增殖;当Notch活性被抑制时,干细胞进入分化程序,发育为功能细胞[4]。

  3)整合素(Integrin)与细胞外基质

  整合素家族是介导干细胞与细胞外基质粘附的最主要的分子。整合素与其配体的相互作用为干细胞的非分化增殖提供了适当的微环境。比如当β1整合素丧失功能时,上皮干细胞逃脱了微环境的制约,分化成角质细胞。此外细胞外基质通过调节β1整合素的表达和激活,从而影响干细胞的分布和分化方向。

  ·2.3 干细胞的可塑性

  越来越多的证据表明,当成体干细胞被移植入受体中,它们表现出很强的可塑性。通常情况下,供体的干细胞在受体中分化为与其组织来源一致的细胞。而在某些情况下干细胞的分化并不遵循这种规律。1999年Goodell等人分离出小鼠的肌肉干细胞,体外培养5天后,与少量的骨髓间质细胞一起移植入接受致死量辐射的小鼠中,结果发现肌肉干细胞会分化为各种血细胞系。这种现象被称为干细胞的横向分化(trans-differentiation)[5]。关于横向分化的调控机制目前还不清楚。大多数观点认为干细胞的分化与微环境密切相关。可能的机制是,干细胞进入新的微环境后,对分化信号的反应受到周围正在进行分化的细胞的影响,从而对新的微环境中的调节信号做出反应。

  克隆猪、克隆羊,其技术的机制原理和干细胞是一致的。

3.【种类划分】

  干细胞按能力可以分为以下四类:

   1.全能干细胞

  由卵和精细胞的融合产生受精卵。而受精卵在形成胚胎过程中四细胞期之前任一细胞皆是全能干细胞。具有发展成独立个体的能力。也就是说能发展成一个个体的细胞就称为全能干细胞。

   2.万能干细胞

  是全能干细胞的后裔,无法发育成一个个体,但具有可以发育成多种组织的能力的细胞。

   3.多能干细胞

  只能分化成特定组织或器官等特定族群的细胞(例如血细胞,包括红血细胞、白血细胞和血小板)。

   4.专一性干细胞

  只能产生一种细胞类型;但是,具有自更新属性,将其与非干细胞区分开。

4.【研究情况】

  ·干细胞研究的历史情况

  干细胞的研究被认为开始于1960年代,在加拿大科学家恩尼斯特·莫科洛克和詹姆士·堤尔的研究之后。

  1959年,美国首次报道了通过体外受精(IVF)动物。

  60年代,几个近亲种系的小鼠睾丸畸胎瘤的研究表明其来源于胚胎生殖细胞(embryonic germ cells, EG细胞),此工作确立了胚胎癌细胞(embryonic carcinoma cells, EC细胞)是一种干细胞。

  1968年,Edwards 和Bavister 在体外获得了第一个人卵子。

  70年代,EC细胞注入小鼠胚泡产生杂合小鼠。培养的SC细胞作为胚胎发育的模型,虽然其染色体的数目属于异常。

  1978年,第一个试管婴儿,Louise Brown 在英国诞生。

  1981年,Evan, Kaufman 和Martin从小鼠胚泡内细胞群分离出小鼠ES细胞。他们建立了小鼠ES细胞体外培养条件。由这些细胞产生的细胞系有正常的二倍型,像原生殖细胞一样产生三个胚层的衍生物。将ES细胞注入上鼠,能诱导形成畸胎瘤。

  1984—1988年,Anderews 等人从人睾丸畸胎瘤细胞系Tera-2中产生出多能的、可鉴定的(克隆化的)细胞,称之为胚胎癌细胞(embryonic carcinoma cells, EC细胞)。克隆的人EC细胞在视黄酸的作用下分化形成神经元样细胞和其他类型的细胞。

  1989年,Pera 等分离了一个人EC细胞系,此细胞系能产生出三个胚层的组织。这些细胞是非整倍体的(比正常细胞染色体多或少),他们在体外的分化潜能是有限的。

  1994年,通过体外授精和病人捐献的人胚泡处于2-原核期。胚泡内细胞群在培养中得以保存其周边有滋养层细胞聚集,ES样细胞位于中央。

  1998年美国有两个小组分别培养出了人的多能( pluripotent )干细胞: James A. Thomson在 Wisconsin大学领导的研究小组从人胚胎组织中培养出了干细胞株。他们使用的方法是:人卵体外受精后,将胚胎培育到囊胚阶段,提取 inner cell mass细胞,建立细胞株。经测试这些细胞株的细胞表面 marker 和酶活性,证实他们就是全能干细胞。用这种方法,每个胚胎可取得15-20干细胞用于培养。 John D. Gearhart在 Johns Hopkins大学领导的另一个研究小组也从人胚胎组织中建立了干细胞株。他们的方法是:从受精后5-9周人工流产的胚胎中提取生殖母细胞( primordial germ cell )。由此培养的细胞株,证实具有全能干细胞的特征。

  2000年,由Pera、 Trounson 和 Bongso 领导的新加坡和澳大利亚科学家从治疗不育症的夫妇捐赠的胚泡内细胞群中分离得到人ES细胞,这些细胞体外增殖,保持正常的核型,自发分化形成来源于三个胚层的体细胞系。将其注入免疫缺陷小鼠错开内产生畸胎瘤。

  2003,建立了人类皮肤细胞与兔子卵细胞种间融合的方法,为人胚胎干细胞研究提供了新的途径。

  2004年,Massachusetts Advanced Cell Technology 报道克隆小鼠的干细胞可以通过形成细小血管的心肌细胞修复心衰小鼠的心肌损伤。这种克隆细胞比来源于骨髓的成体干细胞修复作用更快、更有效,可以取代40%的瘢痕组织和恢复心肌功能。这是首次显示克隆干细胞在活体动物体内修复受损组织。

  ·干细胞研究的意义

  分化后的细胞,往往由于高度分化而完全丧失了再分化的能力,这样的细胞最终将衰老和死亡。然而,动物体在发育的过程中,体内却始终保留了一部分未分化的细胞,这就是干细胞。干细胞又叫做起源细胞、万用细胞,是一类具有自我更新和分化潜能的细胞。可以这样说,动物体就是通过干细胞的分裂来实现细胞的更新,从而保证动物体持续生长发育的。

  干细胞根据其分化潜能的大小,可以分为两类:全能干细胞和组织干细胞。前者可以分化、发育成完整的动物个体,后者则是一种或多种组织器官的起源细胞。人的胚胎干细胞可以发育成完整的人,所以属于全能干细胞。

  早在19世纪,发育生物学家就知道,卵细胞受精后很快就开始分裂,先是1个受精卵分裂成2个细胞,然后继续分裂,直至分裂成有16至32个细胞的细胞团,叫做桑椹胚。这时如果将组成桑椹胚的细胞一一分开,并分别植入到母体的子宫内,则每个细胞都可以发育成一个完整的胚胎。这种细胞就是胚胎干细胞,属于全能干细胞。骨髓、脐带、胎盘和脂肪中则可以获取组织干细胞。每个人的体内都有一些终生与自己相伴的干细胞。但是,人的年龄越大,干细胞就越少。为了弥补干细胞的不足,一些科学家建议从胚胎或胎儿以及其他动物身上获取干细胞。进行培养和研究。

  干细胞的用途非常广泛,涉及到医学的多个领域。目前,科学家已经能够在体外鉴别、分离、纯化、扩增和培养人体胚胎干细胞,并以这样的干细胞为“种子”,培育出一些人的组织器官。干细胞及其衍生组织器官的广泛临床应用,将产生一种全新的医疗技术,也就是再造人体正常的甚至年轻的组织器官,从而使人能够用上自己的或他人的干细胞或由干细胞所衍生出的新的组织器官,来替换自身病变的或衰老的组织器官。假如某位老年人能够使用上自己或他人婴幼儿时期或者青年时期保存起来的干细胞及其衍生组织器官,那么,这位老年人的寿命就可以得到明显的延长。美国《科学》杂志于1999年将干细胞研究列为世界十大科学成就的第一,排在人类基因组测序和克隆技术之前。

  新加坡国立大学医院和中央医院通过脐带血干细胞移植手术,根治了一名因家族遗传而患上严重的地中海贫血症的男童,这是世界上第一例移植非亲属的脐带血干细胞而使患者痊愈的手术。医生们认为,脐带血干细胞移植手术并不复杂,就像给患者输血一样。由于脐带血自身固有的特性,使得用脐带血干细胞进行移植比用骨髓进行移植更加有效。现在,利用造血干细胞移植技术已经逐渐成为治疗白血病、各种恶性肿瘤放化疗后引起的造血系统和免疫系统功能障碍等疾病的一种重要手段。科学家预言,用神经干细胞替代已被破坏的神经细胞,有望使因脊髓损伤而瘫痪的病人重新站立起来;不久的将来,失明、帕金森氏综合症、艾滋病、老年性痴呆、心肌梗塞和糖尿病等绝大多数疾病的患者,都可望借助干细胞移植手术获得康复。

  同胚胎干细胞相比,成人身体上的干细胞只能发育成20多种组织器官,而胚胎干细胞则能发育成几乎所有的组织器官。但是,如果从胚胎中提取干细胞,胚胎就会死亡。因此,伦理道理问题就成为当前胚胎干细胞研究的最大问题之一。美国政府明确反对破坏新的胚胎以获取胚胎干细胞,美国众议院甚至提出全面禁止胚胎干细胞克隆研究的法案。美国的一些科学家则对此提出了尖锐的批评,他们认为,将干细胞用于医学研究,在减轻患者痛苦方面很有潜力。如果浪费这样一个绝好的机会,结果将是悲剧性的。

  我国的干细胞研究和应用已经具备了一定的基础,早在20世纪60年代就开始了骨髓干细胞移植方面的研究,目前研究和应用得最多的是造血干细胞。1992年,我国内地第一个骨髓移植非亲属供者登记组在北京成立,“中华骨髓库”也正式接受捐赠。2002年,北京建立了脐带血干细胞库。关于胚胎干细胞的研究,我国目前还没有明确的法律规定。

  ·NIH关于胚胎干细胞研究的指导原则

  允许

   1、从人胚中获得新细胞系

  2、使用私人资助、已经获得的来自人胚的细胞系进行研究

  3、从胎组织中获得新细胞系

   禁止

  1、使用来自胎儿组织的细胞系进行研究

  2、用干细胞创建人胚胎的研究

  3、将人胚胎干细胞与动物胚胎结合的研究

  4、使用干细胞进行生殖克隆

  5、来自为研究目的而专门创建的胚胎的干细胞有关研究

5.【人体干细胞】

  ·人体干细胞分两种类型

  一种是全功能干细胞,可直接克隆人体;另一种是多功能干细胞,可直接复制各种脏器和修复组织。人类寄希望于利用于细胞的分离和体外培养,在体外繁育出组织或器官,并最终通过组织或器官移植,实现对临床疾病的治疗。

  “原位培植皮肤干细胞再生新皮肤技术”不仅实现了利用于细胞复制皮肤器官,而且做到了人体原位皮肤器官的复制,从而使人类从干细胞体外培植组织成器官移植治疗,直接跨入了人体原位干细胞复制器官。科学家普遍认为:干细胞的研究将为临床医学提供更为广阔的应用前景。

  干细胞具有经培养不定期地分化并产生特化细胞的能力。在正常的人体发育环境中,它们得到了最好的诠释。人体发育起始于卵子的受精,产生一个能发育为完整有机体潜能的单细胞,即全能性受精卵。受精后的最初几个小时内,受精卵分裂为一些完全相同的全能细胞。这意味着如果把这些细胞的任何一个放入女性子宫内,均有可能发育成胎儿。实际上,当两个全能细胞分别发育为单独遗传基因型的人时,即出现了各方面都完全相同的双胞胎。大约在受精后四天,经过几个循环的细胞分裂之后,这些全能细胞开始特异化,形成一个中空环形的细胞群结构,称之为胚囊,胚囊由外层细胞和位于中空球形内的细胞簇(称为内细胞群)所构成。

  外层细胞继续发展,形成胎盘以及胎儿在子宫内发育所需的其它支持组织。内细胞群细胞亦继续发育,形成人体所须的全部组织。尽管内细胞群可形成人体内的所有组织,但它们不能发育为一个单独的生物体,因为它们不能形成胎盘以及子宫内发育所需的支持组织。这些内细胞群细胞是多能性的----它们能产生许多种类型的细胞,但并非胎儿发育所需的全部细胞类型。因为它们不是全能性的,不是胚胎,没有完全的发育潜能。如果内细胞群被放入女性子宫,它不会发育成胎儿。

  多能性干细胞经历进一步的特异分化,发展为参与生成特殊功能细胞的干细胞。如造血干细胞,它能产生红细胞、白细胞和血小板。又如皮肤干细胞,它能产生各种类型的皮肤细胞。这些更专门化的干细胞被称为专能干细胞。

  干细胞对早期人体的发育特别重要,在儿童和成年人中也可发现专能干细胞。举我们所最熟知的干细胞之一,造血干细胞为例,造血干细胞存在于每个儿童和成年人的骨髓之中,也存在于循环血液中,但数量非常少。在我们的整个生命过程中,造血干细胞在不断地向人体补充血细胞——红细胞、白细胞和血小板的过程中起着很关键的作用。如果没有造血干细胞,我们就无法存活。

  干细胞是一类具有自我更新和分化潜能的细胞。它包括胚胎干细胞和成体干细胞。干细胞的发育受多种内在机制和微环境因素的影响。目前人类胚胎干细胞已成功地在体外培养。最新研究发现,成体干细胞可以横向分化为其它类型的细胞和组织,为干细胞的广泛应用提供了基础。

  在胚胎的发生发育中,单个受精卵可以分裂发育为多细胞组织或器官。在成年动物中,正常的胜生理代谢或病理损伤也会引起组织或器官的修复再生。胚胎的分化形成和成年组织的再生是干细胞进一步分化的结果。胚胎干细胞是全能的,具有分化为几乎全部组织和器官的能力。而成年组织或器官内的干细胞一般认为具有组织特异性,只能分化特定的细胞或组织。

  然而,这个观点目前受到了挑战。最新的研究表明,组织特异性干细胞同样具有分化成其它细胞或组织的潜能,这为干细胞的应用开创了更广泛的空间。按分化潜能的大小,干细胞基本上可分为三种类型:一类是全能性干细胞,它具有形成完整个体的分化潜能。如胚胎干细胞,它是从早期胚胎内的细胞团分离出来的一种高度未分化的细胞系,具有与早期胚胎细胞相似的形态特征和很强的分化能力,它可以无限增殖并分化成为全身200多种细胞类型,进一步形成机体的所有组织、器官。另一类是多能性干细胞,这种干细胞具有分化出多种细胞组织的潜能,但却失去了发育成完整个体的能力,发育潜能受到一定的限制,骨髓多能造血干细胞是典型的例子,它可分化出至少十一中血细胞,但不分化出造血系统以外的其他细胞。还有一类干细胞为单能干细胞(也称专能、偏能干细胞),这类干细胞只能向一种类型或密切相关的两种类型的细胞分化,如上皮组织基底层的干细胞、肌肉中的成肌细胞。

  总之,凡需要不断产生新的分化细胞以及分化细胞本身不能再分裂的细胞或组织,都要通过干细胞所产生的具有分化能力的细胞来维持肌体细胞的数量,可以这样说,生命是通过干细胞的分裂来实现细胞的更新及保证持续生长。

  随着基因工程、胚胎工程、细胞工程等各种生物技术的快速发展,按照一定的目的,在体外人工分离、培养干细胞已成为可能,利用干细胞构建各种细胞、组织、器官作为移植器官的来源,这将成为干细胞应用的主要方向。

6.【伦理之争】

  尽管人胚胎干细胞有着巨大的医学应用潜力,但围绕该研究的伦理道德问题也随之出现。这些问题主要包括人胚胎干细胞的来源是否合乎法律及道德,应用潜力是否会引起伦理及法律问题。从体外受精人胚中获得的ES细胞在适当条件下能否发育成人?干细胞要是来自自愿终止妊娠的孕妇该如何办?为获得ES细胞而杀死人胚是否道德?是不是良好的愿望为邪恶的手段提供了正当理由?使用来自自发或事故流产胚胎的细胞是否恰当?一些人争辩,从人胚中收集胚胎干细胞是不道德的,因为人的生命没有得到珍重,人的胚胎也是生命的一种形式,无论目的如何高尚,破坏人胚是不可想象的。而某些人辩称,由于科学家们没有杀死细胞,而只是改变了其命运,因而是道德的。有些人担心,为获得更多的细胞系,公司会资助体外受精获得囊胚及人工流产获得胎儿组织。他们建议应该鼓励成人体干细胞研究而应放弃胚胎干细胞研究。

  如果胚胎干细胞和胚胎生殖细胞可以作为细胞系而可买卖获取,科学家使用它们符合道德规范吗?什么类型的研究可被接受?能允许科学家为研究发育过程或建立医学移植组织而培养个体组织和器官吗?由于目前已接受人体基因可以插入动物细胞中,将人胚胎干细胞嵌入家畜胚胎中创立嵌合体来获得移植用人体器官是否道德?为了治疗,改变来自有基因缺陷胚胎的ES细胞的基因,并使其继续发育成健康个体是否道德?如果人的替代组织极易获取,会不会有更多的人将不负责任地生活,而从事高风险的活动?这些问题很难简单回答,必须认真研究人胚胎干细胞研究涉及的伦理、社会、 法律、医学、神学和道德问题。

  考虑到美国法律禁止使用政府资金资助人胚胎研究,美国国立卫生研究所(NIH)主任沃马斯教授曾向主管NIH的政府部门——美国卫生和福利部(DHHS)咨询有关法律意见。DHHS在1998年12月决定:“美国国会关于禁止人胚胎研究的法案不适用于胚胎干细胞研究,因为按目前的定义胚胎干细胞不等于胚胎”,此外,“由于胚胎干细胞植入子宫后,不具有依靠自身发育成个体人的能力,不能将其视为人胚胎。”因此,DHHS可以资助来自胚胎的多能干细胞的研究。至于人胚胎生殖细胞,因为胚胎生殖细胞来自无活力的胎儿,获得和使用此类细胞符合联邦法律有关胎儿组织研究的规定,因而也可获得DHHS资助。对此决定人们反应不一。美国73位著名科学家(其中67位是诺贝尔奖获得者)马上联名表示支持,称这一决定是值得赞赏和高瞻远瞩的(Science,1999,Vol283:1849),某类研究引起如此众多诺贝尔奖得主的关注在科学史上是绝无仅有的,这也从一个侧面反映了胚胎干细胞研究的重要性及艰巨性。美国几个颇具影响的学术团体如美国实验生物学会联盟,美国细胞生物学会和美国发育生物学会也都支持有关联邦资金可以资助人胚胎干细胞研究的决定。民主党参议员汤姆.哈金称这一决定将为科学发现许多疾病的新疗法铺平道路,并且强调政府不应该对医学研究设置禁令。NIH主任沃马斯称这项科研工作的前景将灿烂辉煌,不过他还是提醒研究人员,用联邦资金从事获得新的胚胎干细胞系仍违法,但是科学家可以使用联邦资金对汤姆生和吉尔哈特获得的人胚胎干细胞系进行研究。

  DHHS有关ES细胞研究的规定却遭到某些国会、教会和人权组织人士的反对。天主教人士道尔福林格指责这一规定严重违反目前法律精神:“他们将用私人资金摧毁胚胎,而用联邦资金从事胚胎实验。”在1999年2月,70位众议员在一封写给卫生和福利部部长的信中要求废除此项规定,称它“违犯了美国政府严禁资助破坏人胚胎的实验研究的联邦法律条文和精神”。美国生命联盟人权组织主席朱迪布朗抗议使用干细胞,因为它们来自应受美国法律保护的可发育成人的胚胎。国会议员杰.迪凯极力反对该规定,甚至要将DHHS告上法庭,他认为目前的法律不允许联邦资金用于胚胎干细胞研究,也不必对此做任何修改,他强调“科学应为人类服务,而不是人为科学服务”。反堕胎活动分子更是要求国会干预和阻挠此类研究。在广泛听取各方意见的基础上,NIH在NBAC的指导下终于在1999年12月公布了“关于胚胎干细胞研究的指导原则”(表1)。从表中可以看出,再用汤姆生的方法从人胚中获得新的胚胎干细胞系是违法的,但允许对已获得的来自人胚的细胞系进行研究。对于用吉尔哈特方法获得、使用和研究来自胎儿组织的细胞系则相对宽容。尽管该规定还很苛刻,但毕竟为人胚胎干细胞的研究打开了大门。

 

 

 

全能干细胞

 

全能干细胞(totipotent stem cell,TSC)

  能够发育成为具有各种组织器官的完整个体潜能的细胞,如胚胎干细胞。

  全能干细胞是指具有无限分化潜能,能分化成所有组织和器官的干细胞。换句话说,也就是具有形成完整个体分化潜能。胚胎干细胞就属于这一种。

  干细胞是指未分化或分化度极低的细胞.

  全能干细胞是指受精卵到卵裂期32细胞前的所有细胞.

  多能干细胞取自囊胚,原肠胚期.

  原肠胚以后的干细胞只能是专能干细胞了(如某些肝脏细胞,骨髓造血干细胞) .

  所以脐带或者成人骨髓中的都已经是专能干细胞了(即纯体外培养只能分裂分化出特定的组织细胞,如骨髓只能分裂出各种血细胞).

  动物细胞的胞核的确都有全能性(注意和干细胞的区别,如高度分化完了的细胞也有全能性,但不是干细胞),但不是说克隆就能克隆的,必须在离体条件有一系列的刺激诱导,而且现在的克隆还离不开卵细胞胞质的诱导作用(即必须进行核移植),总之,分化度越高,全能性表达越困难,克隆成功的可能性越小.

 

 

造血干细胞

  

造血干细胞(hemopoietic stem cell)又称多能干细胞。是存在于造血组织中的一群原始造血细胞。也可以说它是一切血细胞(其中大多数是免疫细胞)的原始细胞。由造血干细胞定向分化、增殖为不同的血细胞系,并进一步生成血细胞。人类造血干细胞首先出现于胚龄第2~3周的卵黄囊,在胚胎早期(第2~3月)迁至肝、脾,第5个月又从肝、脾迁至骨髓。在胚胎末期一直到出生后,骨髓成为造血干细胞的主要来源。具有多潜能性,即具有自身复制和分化两种功能。在胚胎和迅速再生的骨髓中,造血干细胞多处于增殖周期之中;而在正常骨髓中,则多数处于静止期(G0期),当机体需要时,其中一部分分化成熟,另一部分进行分化增殖,以维持造血干细胞的数量相对稳定。造血干细胞进一步分化发育成不同血细胞系的定向干细胞。定向干细胞多数处于增殖周期之中,并进一步分化为各系统的血细胞系,如红细胞系、粒细胞系、单核-吞噬细胞系、巨核细胞系以及淋巴细胞系。由造血干细胞分化出来的淋巴细胞有两个发育途径,一个受胸腺的作用,在胸腺素的催化下分化成熟为胸腺依赖性淋巴细胞,即T细胞;另一个不受胸腺,而受腔上囊(鸟类)或类囊器官(哺乳动物)的影响,分化成熟为囊依赖性淋巴细胞或骨髓依赖性淋巴细胞,即B细胞。并分别由T、B细胞引起细胞免疫及体液免疫。如机体内造血干细胞缺陷,则可引起严重的免疫缺陷病。

  造血干细胞是血细胞(红细胞、白细胞、血小板等)的鼻祖,是高度未分化细胞,具有良好的分化增殖能力,干细胞可以救助很多患有血液病的人们(如白血病)。因为造血系统原始细胞恶性增生、不会凋亡,从而导致了白血病发病,而救助他们的方法就是将这些恶性细胞全部杀灭,但是化疗是敌我不分得,在杀灭癌细胞的同时也杀死了正常的造血干细胞,导致人体血细胞缺乏,危及病人生命。当病人需要根除白血病时,就要一次性杀灭癌细胞,但是这样超大剂量的化疗往往也将正常干细胞杀灭的寥寥无几。为了让病人尽快恢复造血功能,挽救生病就需要输注造血干细胞,这就是我们所知道的骨髓移植。但是自体的骨髓移植虽然成功率大,排异反应小,但是在采集的时候难免会混杂有白血病细胞,造成以后复发的来源,所以有时需要进行异基因骨髓移植。但是不是任何人的骨髓拿来都可以移植的,如果两个人免疫标记相差太大就会造成过强的排异反应,使得移植失败,病人死亡。您在血液中心采集的干细胞样本,将会送到骨髓库进行基因存档,当有病人需要异基因骨髓移植,而他和您的骨髓配型相近的话,血液中心会通知你捐献干细胞,也就是献骨髓。它不是想象中的那么可怕,对身体也无害,就是将您的血液循环到一个采集机器中,机器自动采集,就像献血一样.

  什么是造血干细胞?

  造血干细胞( Stem cell , SC )的干,译自英文“ stem ”,意为“树”、“干”和“起源”。类似于一棵树干可以长出树杈、树叶,并开花和结果等。通俗地讲,造血干细胞是指尚未发育成熟的细胞,是所有血细胞和免疫细胞的起源,它不仅可以分化为红细胞、白细胞和血小板,还可跨系统分化为各种组织细胞,因此是多功能干细胞,医学上称其为“万用细胞”,也是人体的始祖细胞。

  造血干细胞有两个重要特征:其一,高度的自我更新或自我复制能力;其二,可分化成所有类型的血细胞。造血干细胞采用不对称的分裂方式:由一个细胞分裂为两个细胞。其中一个细胞仍然保持干细胞的一切生物特性,从而保持身体内干细胞数量相对稳定,这就是干细胞自我更新。而另一个则进一步增殖分化为各类血细胞、前体细胞和成熟血细胞,释放到外周血中,执行各自任务,直至衰老死亡,这一过程是不停地进行着的。

  捐献造血干细胞无损健康

  生理上无损健康

  人体血液中有多种血细胞,红细胞、白细胞、血小板等,它们都是有寿命的,多则 120 天,少则 36 小时,不断新陈代谢。它们均来自于一种始祖细胞,我们称它为造血干细胞。造血干细胞具有高度的自我更新、自我复制的能力,可分化生成各种血细胞。造血干细胞有很强的再生能力,失血或捐献造血干细胞后,可刺激骨髓加速造血, 1-2 周内,血液中各种成分可恢复到原来水平。

  适龄、健康的志愿者捐献造血干细胞后,由于血细胞数量减少,会促使骨髓把储备的白细胞释放,并刺激骨髓造血功能,促使血细胞的生成,不会影响身体健康。

  人体的造血干细胞主要存留在长骨的骨髓腔和扁平骨的稀松骨质间的网眼内,这是一种红色的海绵状组织,被称为红骨髓。

  人出生时,红骨髓充满全身骨髓腔,随着年龄长大,脂肪细胞增多,相当部分红骨髓变成黄骨髓。此种变化是由于成人不需要全部骨髓参加造血,部分骨髓造血已经足够补充所需血液。当身体严重缺血时,部分黄骨髓又可以变成红骨髓而继续进行造血。   实践上证明安全

  我国大陆已经采集 270 多例造血干细胞,这是无血缘关系的,有血缘关系的则更多;

  台湾已经采集 800 多例造血干细胞(大部分为骨髓)。

  国际上美国已经采集 2 万多例造血干细胞(大部分为骨髓);   日本已经采集 5500 多例造血干细胞(全部是骨髓)。

  据多年的临床观察和国际上的报道,至今还没有因采集外周血造血干细胞引起对捐献者伤害的案例。在采集完成后,一些轻微疼痛感和不适将很快消失。

  动员剂安全可靠

  从外周血采集造血干细胞简单、省事,故我国捐献造血干细胞较多采用此种方法。但在正常生理条件下,外周血的造血干细胞数量少,不能满足移植的需要,如注射细胞动员剂 , 可使外周血造血干细胞增加 20~30 倍。目前使用的细胞动员剂是“粒一巨噬细胞集落刺激因子( GM--CSF )”,除能增加外周血造血干细胞的数量外,还有辅助心脏功能等作用。据多年的临床观察和国际上的报道,至今还没有发现其对人体健康的危害和副作用。

  造血干细胞采集量和标准

  成年人( 18 ~ 45 岁)的骨髓量一般在 3000 克 左右,大部存于骨髓腔。成人一例采集量为 50 — 200ml 造血细胞悬液,采集次数不超过 2 次。一般循环处理血量不少于 10000ml 。 CD34+ > 2 × 106/kg 、 MNC > 5 × 108/kg 。每天检测 CD34+ 量,在最高峰时间采集,对捐献者本身无不良影响。

  采集技术成熟

  中华骨髓库有经专家委员会审定的移植医院和采集医院(中心),在这样的医院里采集造血干细胞如同采集成分血一样简单、安全。

  在整个采取过程中所用的器材都经过严格消毒,并一次性使用,确保了捐献者的安全。

  造血干细胞移植技术的发现和应用

  骨髓移植技术的发现

  生命科学是二十世纪发展最为迅猛的学科之一,已经成为自然科学中最引人注目的领域。 1957 年,美国华盛顿大学多纳尔·托玛斯发现正常人的骨髓移植到病人体内,可以治疗造血功能障碍。这一技术的发现,使多纳尔·托玛斯本人荣获了诺贝尔奖。

  这一技术很快得到全世界的认可,并已成为根治白血病等病的主要手段。造血干细胞移植技术的发现和应用为人类战胜疾病带来新的希望。

  什么是造血干细胞?

  干细胞是具有自我复制和多向分化潜能的原始细胞,是机体的起源细胞,是形成人体各种组织器官的祖宗细胞。而造血干细胞是所有造血细胞和免疫细胞的起源细胞,具有自我更新、多向分化和归巢(即定向迁移至造血组织器官)潜能。它不仅可分化为红细胞、白细胞和血小板,还可跨系统分化为各种组织器官的细胞,因此是多功能干细胞。

  骨髓移植可治疾病

  造血干细胞移植是现代生命科学的重大突破。造血干细胞移植可治疗恶性血液病,部分恶性肿瘤,部分遗传性疾病等 75 种致死性疾病。包括急性白血病、慢性白血病、骨髓增生异常综合征、造血干细胞疾病、骨髓增殖性疾病、淋巴增殖性疾病、巨噬细胞疾病、遗传性代谢性疾病、组织细胞疾病、遗传性红细胞疾病、遗传性免疫系统疾病、遗传性血小板疾病、浆细胞疾病、地中海贫血、非血液系统恶性肿瘤、急性放射病等。

  因为有了造血干细胞移植技术,世界各地成千上万患有以上疾病的患者,重新燃起了生命的希望。

  造血干细胞的来源

  一般造血干细胞来源于三个渠道:

  1 、骨髓造血干细胞。

  2 、外周造血干细胞。

  3 、脐带血造血干细胞。

  中华骨髓库目前主要开展外周血造血干细胞采集。

  三种来源及应用对比

 

移植方式

  

外周血造血干细胞

  

骨髓造血干细胞

  

脐带血造血干细胞

  

成份

  

较为单一的造血干细胞

  

除造血干细胞外还有其他血液成份

  

除造血干细胞外还有其他血液成份

  

采集方法

  

在上臂血管采集

  不住院不麻醉,采集前注射动员剂无痛苦

  

在髓骨上钻孔采集

  需住院需麻醉不需注射动员剂有痛苦

  

收集脐带血

  

移植应用

  

普遍

  

较少

  

只适用25KG下儿童

  

成本

  

  

  

很高

  

采集及恢复时间

  

2-4天

  

半年

  

--

  

保存

  

无需保存

  

无需保存

  

实体保存

  

应用

  

普遍

  

较少

  

很少

  

 

 

 

克隆

 

  克隆是英文"clone"或"cloning"的音译,而英文"clone"则起源于希腊文"Klone",原意是指幼苗或嫩枝,以无性繁殖或营养繁殖的方式培育植物,如扦插和嫁接。在大陆译为“无性繁殖”在台湾与港澳一般意译为复制或转殖或群殖。 中文也有更加确切的词表达克隆,“无性繁殖”、“无性系化”以及“纯系化”。

  克隆是指生物体通过体细胞进行的无性繁殖,以及由无性繁殖形成的基因型完全相同的后代个体组成的种群。通常是利用生物技术由无性生殖产生与原个体有完全相同基因组织后代的过程。科学家把人工遗传操作动物繁殖的过程叫克隆,这门生物技术叫克隆技术,其本身的含义是无性繁殖,即由同一个祖先细胞分裂繁殖而形成的纯细胞系,该细胞系中每个细胞的基因彼此相同。

  克隆也可以理解为复制、拷贝,就是从原型中产生出同样的复制品,它的外表及遗传基因与原型完全相同。 时至今日,“克隆”的含义已不仅仅是“无性繁殖”,凡是来自同一个祖先,无性繁殖出的一群个体,也叫“克隆”。这种来自同一个祖先的无性繁殖的后代群体也叫“无性繁殖系”,简称无性系。简单讲就是一种人工诱导的无性繁殖方式。但克隆与无性繁殖是不同的。无性繁殖是指不经过雌雄两性生殖细胞的结合、只由一个生物体产生后代的生殖方式,常见的有孢子生殖、出芽生殖和分裂生殖。由植物的根、茎、叶等经过压条或嫁接等方式产生新个体也叫无性繁殖。绵羊、猴子和牛等动物没有人工操作是不能进行无性繁殖的。克隆羊多利也是克隆的产物。关于克隆的设想,我国明代的大作家吴承恩已有精彩的描述——孙悟空经常在紧要关头拔一把猴毛变出一大群猴子,这当然是神话,但用今天的科学名词来讲就是孙悟空能迅速的克隆自己。从理论上讲,猴子毛含全部脱氧核糖核酸序列,也就是可以克隆,但是事实上,我们的技术没有先进到这样的地步。

  另外一种克隆方法是提取两个或多个人的基因细胞进行组合形成胚胎,出生后的克隆人将有提供基因的几个人的特征.就像游戏(终极刺客代号47)里面的克隆人47\17号一样,主角杀手47是一个克隆人.他的基因来源于五个人的组合在一起.

  神奇的克隆正向人类展示它诱人的前景!

基本过程

  先将含有遗传物质的供体细胞的核移植到去除了细胞核的卵细胞中,利用微电流刺激等使两者融合为一体,然后促使这一新细胞分裂繁殖发育成胚胎,当胚胎发育到一定程度后,再被植入动物子宫中使动物怀孕,便可产下与提供细胞者基因相同的动物。这一过程中如果对供体细胞进行基因改造,那么无性繁殖的动物后代基因就会发生相同的变化。

  克隆技术不需要雌雄交配,不需要精子和卵子的结合,只需从动物身上提取一个单细胞,用人工的方法将其培养成胚胎,再将胚胎植入雌性动物体内,就可孕育出新的个体。这种以单细胞培养出来的克隆动物,具有与单细胞供体完全相同的特征,是单细胞供体的“复制品”。英国英格兰科学家和美国俄勒冈科学家先后培养出了“克隆羊”和“克隆猴”。克隆技术的成功,被人们称为“历史性的事件,科学的创举”。有人甚至认为,克隆技术可以同当年原子弹的问世相提并论。

  克隆技术可以用来生产“克隆人”,可以用来“复制”人,因而引起了全世界的广泛关注。对人类来说,克隆技术是悲是喜,是祸是福?唯物辩证法认为,世界上的任何事物都是矛盾的统一体,都是一分为二的。克隆技术也是这样。如果克隆技术被用于“复制”像希特勒之类的战争狂人,那会给人类社会带来什么呢?即使是用于“复制”普通的人,也会带来一系列的伦理道德问题。如果把克隆技术应用于畜牧业生产,将会使优良牲畜品种的培育与繁殖发生根本性的变革。若将克隆技术用于基因治疗的研究,就极有可能攻克那些危及人类生命健康的癌症、艾滋病等顽疾。克隆技术犹如原子能技术,是一把双刃剑,剑柄掌握在人类手中。人类应该采取联合行动,避免“克隆人”的出现,使克隆技术造福于人类社会。

早期研究

  同一克隆的所有成员的遗传构成是完全相同的,例外仅见于有突变发生时。自然界早已存在天然植物、动物和微生物的克隆,例如:同卵双胞胎实际上就是一种克隆。然而,天然的哺乳动物克隆的发生率极低,成员数目太少(一般为两个),且缺乏目的性,所以很少能够被用来为人类造福,因此,人们开始探索用人工的方法来生产高等动物克隆。这样,克隆一词就开始被用作动词,指人工培育克隆动物这一动作。

  目前,生产哺乳动物克隆的方法主要有胚胎分割和细胞核移植两种。克隆羊“多利”,以及其后各国科学家培育的各种克隆动物,采用的都是细胞核移植技术。所谓细胞核移植,是指将不同发育时期的胚胎或成体动物的细胞核,经显微手术和细胞融合方法移植到去核卵母细胞中,重新组成胚胎并使之发育成熟的过程。与胚胎分割技术不同,细胞核移植技术,特别是细胞核连续移植技术可以产生无限个遗传相同的个体。由于细胞核移植是产生克隆动物的有效方法,故人们往往把它称为动物克隆技术。

  采用细胞核移植技术克隆动物的设想,最初由汉斯·施佩曼在1938年提出,他称之为“奇异的实验”,即从发育到后期的胚胎(成熟或未成熟的胚胎均可)中取出细胞核,将其移植到一个卵子中。这一设想是现在克隆动物的基本途径。

  从1952年起,科学家们首先采用青蛙开展细胞核移植克隆实验,先后获得了蝌蚪和成体蛙。1963年,我国童第周教授领导的科研组,首先以金鱼等为材料,研究了鱼类胚胎细胞核移植技术,获得成功。 1964年,英国科学家格登(J.Gurdon)将非洲爪蟾未受精的卵用紫外线照射,破坏其细胞核,然后从蝌蚪的体细胞——个上皮细胞中吸取细胞核,并将该核注入核被破坏的卵中,结果发现有1.5%这种移核卵分化发育成为正常的成蛙。格登的试验第一次证明了动物的体细胞核具有全面性。

  哺乳动物胚胎细胞核移植研究的最初成果在1981年取得——卡尔·伊尔门泽和彼得·霍佩用鼠胚胎细胞培育出发育正常的小鼠。1984年,施特恩·维拉德森用取自羊的未成熟胚胎细胞克隆出一只活产羊,其他人后来利用牛、猪、山羊、兔和猕猴等各种动物对他采用的实验方法进行了重复实验。1989年,维拉德森获得连续移核二代的克隆牛。1994年,尼尔·菲尔斯特用发育到至少有120个细胞的晚期胚胎克隆牛。到1995年,在主要的哺乳动物中,胚胎细胞核移植都获得成功,包括冷冻和体外生产的胚胎;对胚胎干细胞或成体干细胞的核移植实验,也都做了尝试。但到1995年为止,成体动物已分化细胞核移植一直未能取得成功。

  以上事实说明,在1997年2月英国罗斯林研究所维尔穆特博士科研组公布体细胞克隆羊“多莉”培育成功之前,胚胎细胞核移植技术已经有了很大的发展。实际上,“多莉”的克隆在核移植技术上沿袭了胚胎细胞核移植的全部过程,但这并不能减低“多莉”的重大意义,因为它是世界上第一例经体细胞核移植出生的动物,是克隆技术领域研究的巨大突破。这一巨大进展意味着:在理论上证明了,同植物细胞一样,分化了的动物细胞核也具有全能性,在分化过程中细胞核中的遗传物质没有不可逆变化;在实践上证明了,利用体细胞进行动物克隆的技术是可行的,将有无数相同的细胞可用来作为供体进行核移植,并且在与卵细胞相融合前可对这些供体细胞进行一系列复杂的遗传操作,从而为大规模复制动物优良品种和生产转基因动物提供了有效方法。

  在理论上,利用同样方法,人可以复制“克隆人”,这意味着以往科幻小说中的独裁狂人克隆自己的想法是完全可以实现的。因此,“多莉”的诞生在世界各国科学界、政界乃至宗教界都引起了强烈反响,并引发了一场由克隆人所衍生的道德问题的讨论。各国政府有关人士、民间纷纷作出反应:克隆人类有悖于伦理道德。尽管如此,克隆技术的巨大理论意义和实用价值促使科学家们加快了研究的步伐,从而使动物克隆技术的研究与开发进入一个高潮。

近年来克隆研究的重要成果

  克隆羊“多利”的诞生在全世界掀起了克隆研究热潮,随后,有关克隆动物的报道接连不断。1997年3月,即“多利”诞生后近1个月的时间里,美国、中国台湾和澳大利亚科学家分别发表了他们成功克隆猴子、猪和牛的消息。不过,他们都是采用胚胎细胞进行克隆,其意义不能与“多利”相比。同年7月,罗斯林研究所和PPL公司宣布用基因改造过的胎儿成纤维细胞克隆出世界上第一头带有人类基因的转基因绵羊“波莉”(Polly)。这一成果显示了克隆技术在培育转基因动物方面的巨大应用价值。

  1998年7月,美国夏威夷大学Wakayama等报道,由小鼠卵丘细胞克隆了27只成活小鼠,其中7只是由克隆小鼠再次克隆的后代,这是继“多利”以后的第二批哺乳动物体细胞核移植后代。此外,Wakayama等人采用了与“多利”不同的、新的、相对简单的且成功率较高的克隆技术,这一技术以该大学所在地而命名为“檀香山技术”。

  此后,美国、法国、荷兰和韩国等国科学家也相继报道了体细胞克隆牛成功的消息;日本科学家的研究热情尤为惊人,1998年7月至1999年4月,东京农业大学、近畿大学、家畜改良事业团、地方(石川县、大分县和鹿儿岛县等)家畜试验场以及民间企业(如日本最大的奶商品公司雪印乳业等)纷纷报道了,他们采用牛耳部、臀部肌肉、卵丘细胞以及初乳中提取的乳腺细胞克隆牛的成果。至1999年底,全世界已有6种类型细胞——胎儿成纤维细胞、乳腺细胞、卵丘细胞、输卵管/子宫上皮细胞、肌肉细胞和耳部皮肤细胞的体细胞克隆后代成功诞生。

  2000年6月,中国西北农林科技大学利用成年山羊体细胞克隆出两只“克隆羊”,但其中一只因呼吸系统发育不良而早夭。据介绍,所采用的克隆技术为该研究组自己研究所得,与克隆“多利”的技术完全不同,这表明我国科学家也掌握了体细胞克隆的尖端技术。

  在不同种间进行细胞核移植实验也取得了一些可喜成果,1998年1月,美国威斯康星一麦迪逊大学的科学家们以牛的卵子为受体,成功克隆出猪、牛、羊、鼠和猕猴五种哺乳动物的胚胎,这一研究结果表明,某个物种的未受精卵可以同取自多种动物的成熟细胞核相结合。虽然这些胚胎都流产了,但它对异种克隆的可能性作了有益的尝试。1999年,美国科学家用牛卵子克隆出珍稀动物盘羊的胚胎;我国科学家也用兔卵子克隆了大熊猫的早期胚胎,这些成果说明克隆技术有可能成为保护和拯救濒危动物的一条新途径。

  奇妙的克隆克隆技术已展示出广阔的应用前景,概括起来大致有以下四个方面:

  (1)培育优良畜种和生产实验动物;

  (2)生产转基因动物;

  (3)生产人胚胎干细胞用于细胞和组织替代疗法;

  (4)复制濒危的动物物种,保存和传播动物物种资源。

  以下就生产转基因动物和胚胎干细胞作简要说明。

  转基因动物研究是动物生物工程领域中最诱人和最有发展前景的课题之一,转基因动物可作为医用器官移植的供体、作为生物反应器,以及用于家畜遗传改良、创建疾病实验模型等。但目前转基因动物的实际应用并不多,除单一基因修饰的转基因小鼠医学模型较早得到应用外,转基因动物乳腺生物反应器生产药物蛋白的研究时间较长,已进行了10多年,但目前在全世界范围内仅有2例药品进入3期临床试验,5~6个药品进入2期临床试验;而其农艺性状发生改良、可资畜牧生产应用的转基因家畜品系至今没有诞生。转基因动物制作效率低、定点整合困难所导致的成本过高和调控失灵,以及转基因动物有性繁殖后代遗传性状出现分离、难以保持始祖的优良胜状,是制约当今转基因动物实用化进程的主要原因。

  体细胞克隆的成功为转基因动物生产掀起一场新的革命,动物体细胞克隆技术为迅速放大转基因动物所产生的种质创新效果提供了技术可能。采用简便的体细胞转染技术实施目标基因的转移,可以避免家畜生殖细胞来源困难和低效率。同时,采用转基因体细胞系,可以在实验室条件下进行转基因整合预检和性别预选。在核移植前,先把目的外源基因和标记基因(如LagZ基因和新霉素抗生基因)的融合基因导入培养的体细胞中,再通过标记基因的表现来筛选转基因阳性细胞及其克隆,然后把此阳性细胞的核移植到去核卵母细胞中,最后生产出的动物在理论上应是100%的阳性转基因动物。采用此法,Schnieke等(Bio Report,1997)已成功获得6只转基因绵羊,其中3只带有人凝血因子IX基因和标记基因(新霉素抗性基因),3只带有标记基因,目的外源基因整合率高达50%。Cibelli(Science,1997)同样利用核移植法获得3头转基因牛,证实了该法的有效性。由此可以看出,当今动物克隆技术最重要的应用方向之一,就是高附加值转基因克隆动物的研究开发。

  胚胎干细胞(ES)是具有形成所有成年细胞类型潜力的全能干细胞。科学家们一直试图诱导各种干细胞定向分化为特定的组织类型,来替代那些受损的体内组织,比如把产生胰岛素的细胞植入糖尿病患者体内。科学家们已经能够使猪ES细胞转变为跳动的心肌细胞,使人ES细胞生成神经细胞和间充质细胞和使小鼠ES细胞分化为内胚层细胞。这些结果为细胞和组织替代疗法开辟了道路。目前,科学家已成功分离到人ES细胞(Thomson等1998,Science),而体细胞克隆技术为生产患者自身的ES细胞提供了可能。把患者体细胞移植到去核卵母细胞中形成重组胚,把重组胚体外培养到囊胚,然后从囊胚内分离出ES细胞,获得的ES细胞使之定向分化为所需的特定细胞类型(如神经细胞,肌肉细胞和血细胞),用于替代疗法。这种核移植法的最终目的是用于干细胞治疗,而非得到克隆个体,科学家们称之为“治疗克隆”。

  克隆技术在基础研究中的应用也是很有意义的,它为研究配子和胚胎发生,细胞和组织分化,基因表达调控,核质互作等机理提供了工具。

  作为一个新兴的研究队 在实践中,克隆动物的成功率还很低,维尔穆特研究组在培育“多利“的实验中,融合了277枚移植核的卵细胞,仅获得了“多利”这一只成活羔羊,成功率只有0.36%,同时进行的胎儿成纤维细胞和胚胎细胞的克隆实验的成功率也分别只有1.7%和1.1%,即使是使用“檀香山”技术,以分化程度较低的卵丘细胞为核供体,其成功率也只有百分之几。

  此外,生出的部分个体表现出生理或免疫缺限。以克隆牛为例,日本、法国等国培育的许多克隆牛在降生后两个月内死去;到2000年2月,日本全国已共有121头体细胞克隆牛诞生,但存活的只有64头。观察结果表明,部分犊牛胎盘功能不完善,其血液中含氧量及生长因子的浓度都低于正常水平;有些牛犊的胸腺、脾和淋巴腺未得到正常发育;克隆动物胎儿普遍存在比一般动物发育快的倾向,这些都可能是死亡的原因。

  即使是正常发育的“多利”,也被发现有早衰迹象。染色体的末端被称为端粒,它决定着细胞能够分裂的次数:每一次分裂端粒都会缩短,而当端粒耗尽后细胞就失去了分裂能力。1998年,科学家发现“多利”的细胞端粒比正常的要短,即其细胞处于更衰老的状态。当时认为,这可能是用成年绵羊的细胞克隆“多利”造成的,使其细胞具有成年细胞的印记,但这一解释目前受到了挑战,美国马萨诸塞州的医生罗伯特·兰扎等用培养的衰老细胞克隆牛,得到6头小牛,出生5~10个月后发现这些克隆牛的端粒比普通同龄小牛要长,有的甚至比普通新生小牛的端粒还长。现在还不清楚这一现象的原因,也不清楚为何与“多莉“的情况有巨大差别。但这一实验说明,在一些情况下克隆过程能改变成熟细胞的分子钟,使其“恢复青春”,关于这种变化对克隆动物寿命的影响,还有待于进一步观察。

  除了以上的理论和技术障碍外,克隆技术(尤其是在人胚胎方面的应用)对伦理道德的冲击和公众对此的强烈反应也限制了克隆技术的应用。但几年来克隆技术的发展表明,世界各科技大国都不甘落后,谁也没有放弃克隆技术研究。这一点上英国政府的态度非常具有代表性,在1997年2月底宣布中止对“多莉”研究小组投资后不到1个月,英国科技委员会就对克隆技术发表专题报告,表明英国政府将重新考虑这一决定,认为盲目禁止这方面的研究并不是明智之举,关键在于建立一定的规范利用它为人类造福。

  一个细菌经过20分钟左右就可一分为二;一根葡萄枝切成十段就可能变成十株葡萄;仙人掌切成几块,每块落地就生根;一株草莓依靠它沿地“爬走”的匍匐茎,一年内就能长出数百株草莓苗……凡此种种,都是生物靠自身的一分为二或自身的一小部分的扩大来繁衍后代,这就是无性繁殖,无性繁殖的英文名称叫“Clone”,译音为“克隆”。

  自然界的许多动物,在正常情况下都是依靠父方产生的雄性细胞(精子)与母方产生的雌性细胞(卵子)融合(受精)成受精卵(合子),再由受精卵经过一系列细胞分裂长成胚胎,最终形成新的个体,这种依靠父母双方提供性细胞、并经两性细胞融合产生后代的繁殖方法就叫有性繁殖,但是,如果我们用外科手术将一个胚胎分割成两块,四块、八块……最后通过特殊的方法使一个胚胎长成两个、四个,八个……生物体,这些生物体就是克隆个体,而这两个、四个、八个……个体就叫做无性繁殖系(也叫克隆)。

  1979年春,中国科学院武汉水生生物研究所的科学家用鲫鱼囊胚期的细胞进行人工培养,经过385天59代连续传代培养后,用直径10微米左右的玻璃管在显微镜下从培养细胞中吸出细胞核,在此同时,除去鲫鱼卵细胞的核,让卵细胞留出空间作好接纳囊胚细胞核的准备,一切准备就绪后,把玻璃管吸出的核移放到空出位置的鲫鱼卵细胞内,得到了囊胚细胞核的卵细胞在人工培养下大部分夭亡了,在189个这种换核卵细胞中,只有两个孵化出了鱼苗,而最终只有一条幼鱼度过难关,经过80多天培养后长成8厘米长的鲫鱼。这种鲫鱼并没有经过雌、雄细胞的结合,仅仅是给卵细胞换了个囊胚细胞的核,实际上是由换核卵产生的,因此也是克隆鱼。

  在克隆鲫鱼出现之前,英国牛津大学的科学家已经在1960年和1962年,先后用非洲一种有爪的蟾蜍(非洲爪蟾)进行过克隆试验。试验方式是先用紫外线照射爪蟾卵细胞,破坏其中的核,然后依靠高超的外科手术从爪蟾蝌蚪的肠上皮细胞、肝细胞、肾细胞中取出核,并把这些细胞的核精确地放进已被紫外线破坏了细胞核的卵细胞内,经过精心照料,这些换核卵中终于有一部分长出了活蹦乱跳的爪蟾,这种爪蟾也不是经过精细胞和卵细胞州结合产生的,所以也是克隆爪蟾。

  我国著名生物学家童第周先生在1978年成功地进行了黑斑蛙的克隆试验,他将黑斑蛙的红细胞的核移人事先除去了核的黑斑蛙卵中,这种换核卵最后长成能在水中自由游泳的蝌蚪。

  鱼类换核技术的成熟和两栖类换核的成功,使一批从事良种培育工作的科学家激动不已,既然鲫鱼的囊胚细胞核取代鲫鱼卵细胞核后能得到克隆鱼,那么异种鱼换核能否得到新的杂种鱼呢?我国科学家首先提出了这个问题,也首先解决了这个问题,就是培养克隆鲫鱼成功的那个研究所,设法把鲤鱼胚胎细胞的核取代了鲫鱼卵细胞的核。鲤鱼细胞核和鲫鱼卵细胞质居然能相安无事,并开始了类似受精卵分裂发育的过程,最后长出有“胡须”的“鲤鲫鱼”,这种鱼有“胡须”,生长快,完全像鲤鱼,但它的侧线鳞片数和脊椎骨的数目与鲫鱼相同,而且鱼味鲜美不亚于鲫鱼。这种人工克隆新鱼种的出现为鱼类育种开辟了新途径。

  对科学的追求是永无止境的,鱼类,两栖类克隆的成功自然而然地使科学家把目光投向了哺乳类。美国和瑞士的科学家率先从灰色小鼠的胚胎细胞中取出细胞核,用这个核取代黑色小鼠受精卵细胞核。实际上,这个黑色小鼠的受精卵在精细胞核刚进入卵细胞后,就把精细胞核连同卵细胞的核一起除去。灰鼠胚胎细胞的核移人黑色小鼠的去核受精卵后,在试管里人工培养了四天,然后再把它植人白色小鼠的子宫内、经几百次灰、黑、白这样的操作以后,白色小鼠终于生下了三只小灰鼠。

  1996年2月27日出版的英国“自然”杂志公布了爱丁堡罗斯林研究所威尔莫特等人的研究成果:经过247次失败之后,他们在前年7月得到了一只名为“多利”的克隆雌性绵羊。

  “多利”绵羊是如何“创造”出来的呢?威尔莫特等学者先给“苏格兰黑面羊”注射促性腺素,促使它排卵,得到卵之后,立即用极细的吸管从卵细胞中取出核,与此同时,从怀孕三个月的“芬多席特”六龄母羊的乳腺细胞中取出核,立即送人取走核的“苏格兰黑面羊”的卵细胞中,手术完成之后,用相同频率的电脉冲刺激换核卵,让“苏格兰黑面羊”的卵细胞质与“芬多席特”母羊乳腺细胞的核相互协调,使这个“组装”细胞在试管里经历受精卵那样的分裂、发育而形成胚胎的过程,然后,将胚胎巧妙地植人另一只母羊的子宫里。到去年7月,这只“护理”体外形成胚胎的母羊终于产下了小绵羊“多利”。“多利”不是由母羊的卵细胞和公羊的精细胞受精的产物,而是“换核卵”一步一步发展的结果,因此是“克隆羊”。

  “克隆羊”的诞生,在世界各国引起了震惊,它难能可贵之处在于换进去的是体细胞的核,而不是胚胎细胞核。这个结果证明:动物体中执行特殊功能、具有特定形态的所谓高度分化的细胞与受精卵一样具有发育成完整个体的潜在能力。也就是说,动物细胞与植物细胞一样,也具有全能性。

  克隆技术会给人类带来极大的好处,例如,英国PPL公司已培育出羊奶中含有治疗肺气肿的a-1抗胰蛋白酶的母羊。这种羊奶的售价是6千美元一升。一只母羊就好比一座制药厂,用什么办法能最有效、最方便地使这种羊扩大繁殖呢?最好的办法就是“克隆”。同样,荷兰PHP公司培育出能分泌人乳铁蛋白的牛,以色列LAS公司育成了能生产血清白蛋白的羊,这些高附加值的牲畜如何有效地繁殖?答案当然还是“克隆”。

  母马配公驴可以得到杂种优势特别强的动物——骡,骡不能繁殖后代,那么,优良的骡如何扩大繁殖?最好的办法也是“克隆”,我国的大熊猫是国宝,但自然交配成功率低,因此已濒临绝种。如何挽救这类珍稀动物?“克隆”为人类提供了切实可行的途径。

  克隆动物还对于研究癌生物学、研究免疫学、研究人的寿命等都有不可低估的作用。

  不可否认,“克隆绵羊”的问世也引起了许多人对“克隆人”的兴趣,例如,有人在考虑,是否可用自己的细胞克隆成一个胚胎,在其成形前就冰冻起来。在将来的某一天,自身的某个器官出了问题时,就可从胚胎中取出这个器官进行培养,然后替换自己病变的器官,这也就是用克隆法为人类自身提供“配件”。

  有关“克隆人”的讨论提醒人们,科技进步是一首悲喜交集的进行曲。科技越发展,对社会的渗透越广泛深入,就越有可能引起许多有关的伦理、道德和法律等问题。我想用诺贝尔奖获得者,著名分子生物学家J.D.沃森的话来结束本文:“可以期待,许多生物学家,特别是那些从事无性繁殖研究的科学家,将会严肃地考虑它的含意,并展开科学讨论,用以教育世界人民。”

利益

  1.克隆技术与遗传育种

  在农业方面,人们利用“克隆”技术培育出大量具有抗旱、抗倒伏、抗病虫害的优质高产品种,大大提高了粮食产量。在这方面我国已迈入世界最先进的前列。

  2.克隆技术与濒危生物保护

  克隆技术对保护物种特别是珍稀、濒危物种来讲是一个福音,具有很大的应用前景。从生物学的角度看,这也是克隆技术最有价值的地方之一。

  3.克隆技术与医学

  在当代,医生几乎能在所有人类器官和组织上施行移植手术。但就科学技术而言,器官移植中的排斥反应仍是最为头痛的事。排斥反应的原因是组织不配型导致相容性差。如果把“克隆人”的器官提供给“原版人”,作器官移植之用,则绝对没有排斥反应之虑,因为二者基因相配,组织也相配。问题是,利用“克隆人”作为器官供体合不合乎人道?是否合法?经济是否合算?

  克隆技术还可用来大量繁殖有价值的基因,例如,在医学方面,人们正是通过“克隆”技术生产出治疗糖尿病的胰岛素、使侏儒症患者重新长高的生长激素和能抗多种病毒感染的干扰素,等等。

  4.生长周期短,遗传性状稳定

  5 克隆技术可解除那些不能成为母亲的女性的痛苦。

  6克隆实验的实施促进了遗传学的发展,为“制造”能移植于人体的动物器官开辟了前景。

  7克隆技术也可用于检测胎儿的遗传缺陷。将受精卵克隆用于检测各种遗传疾病,克隆的胚胎与子宫中发育的胎儿遗传特征完全相同。

  8 克隆技术可用于治疗神经系统的损伤。成年人的神经组织没有再生能力,但干细胞可以修复神经系统损伤。

  9 在体外受精手术中,医生常常需要将多个受精卵植入子宫,以从中筛选一个进入妊娠阶段。但许多女性只能提供一个卵子用于受精。通过克隆可以很好地解决这一问题。这个卵细胞可以克隆成为多个用于受精,从而大大提高妊娠成功率。

弊端

  1.生态层面,克隆技术导致的基因复制,会威胁基因多样性的保持,生物的演化将出现一个逆向的颠倒过程,即由复杂走向简单,这对生物的生存是极为不利的。

  2.文化层面,克隆人是对自然生殖的替代和否定,打破了生物演进的自律性,带有典型的反自然性质。与当今正在兴起的崇尚天人合一、回归自然的基本文化趋向相悖。

  3.哲学层面,通过克隆技术实现人的自我复制和自我再现之后,可能导致人的身心关系的紊乱。人的不可重复性和不可替代性的个性规定因大量复制而丧失了唯一性,丧失了自我及其个性特征的自然基础和生物学前提。

  4.血缘生育构成了社会结构和社会关系。为什么不同的国家、不同的种族几乎都反对克隆人,原因就是这是另一种生育模式,现在单亲家庭子女教育问题备受关注,就是关注一个情感培育问题,人的成长是在两性繁殖、双亲抚育的状态下完成的,几千年来一直如此,克隆人的出现,社会该如何应对,克隆人与被克隆人的关系到底该是什么呢?

  5.身份和社会权利难以分辨。假如有一天,突然有20个儿子来分你的财产,他们的指纹、基因都一样,该咋办?是不是要像汽车挂牌照一样在他们额头上刻上克隆人川A0001、克隆人川A0002之类的标记才能识别。

  6.可能支持克隆人的人有一个观点:解决无法生育的问题。但一个没有生育能力的人克隆的下一代还会没有生育能力。你自认为优秀,可克隆出的人除血型、相貌、指纹、基因和你一样外,其性格、行为可能完全不同,你能保证克隆人会和你一样优秀而不误入歧途吗?在克隆人研究中,如果出现异常,有缺陷的克隆人不能像克隆的动物随意处理掉,这也是一个麻烦。因此在目前的环境下,不仅是观念、制度,包括整个社会结构都不知道怎么来接纳克隆人。

  7.根据信息克隆生物有早衰性,"多利"也是,因而已逝世.

  8.生命不再宝贵!!!

植物的克隆

  许多植物都有先天克隆的本领。例如,从一棵大柳树上剪下几根枝条插进土里,枝条就会长成一株株活泼可爱的小柳树;把马铃薯切成许多小块种进地里,就能收获许多新鲜的马铃薯;把仙人掌切成几块,每块落地不久就会生根,长成新的仙人掌……此外,一些植物可以通过压条或嫁接培育后代。凡此种种,都是植物的克隆。

奇妙的克隆

  秘密的出生,爆炸性的露面,平静的死亡。其中的成功与失败,创造者自己也不很明白。这只绵羊的一切,似乎都充满象征意味。有母无父,与性无关的出生方式,抛开科学与理性去看,有点神圣的纯洁色彩。然而事实上,多利一生所遭遇的非理性反应中,恐慌多于欢迎。纯洁的羔羊被视为瓶中放出的魔鬼,这种滑稽的反差显示了人类进步过程中始终伴随的某种自我畏惧与自我牵制。总有一些人担心人类知道得太多,尽管在另一些人看来,我们所知道的,与我们需要知道和渴望知道的相比,还显得那么微不足道。

  逆转生命时钟。

  在多莉之前,几十年失败的试验曾使人们几乎绝望地认为,高级动物的体细胞克隆或许是不可能实现的。从发育中的胚胎提取细胞,移植其细胞核,培育一个与该胚胎相同的个体,这种“克隆”相对来说并非难事。因为胚胎细胞具有很强的分化潜力,能在发育过程中分化成皮肤、血液、肌肉、神经等功能和基因特征各不相同的细胞,其中生殖功能由性细胞——精子或卵子来专门承担。一个性细胞只携带一半的遗传信息,需要精子和卵子结合才能发育成新生命。一个体细胞则拥有一套完整的染色体,不需要性细胞的参与,但是,要让已经“定型”的体细胞重新开始胚胎式的发育过程,等于将细胞的生命时钟逆转到起点处,这样的体细胞克隆对哺乳动物而言究竟是否可能?

  多利是苏格兰罗斯林研究所和PPL医疗公司的共同作品。它的基因母亲是一种芬·多塞特品种的白绵羊,在多利出生之前3年就已死去。苏格兰的汉纳研究所在这头母羊怀孕时提取了它的一些乳腺细胞进行冷冻保存,后来又把这些细胞提供给PPL公司进行克隆研究——这后来曾给多利身份的真实性带来一些麻烦。以伊恩·威尔穆特为首的科学家在实验室中培养这些乳腺细胞,使它们在低营养状态下“挨饿”5天左右。然后提取其细胞核,移植到去除了细胞核的苏格兰黑脸羊的卵子里。之所以使用苏格兰黑脸羊的卵子,是因为这种羊身体大部分是白的,脸却是全黑的,很容易与白绵羊区别开来。

  在微电流刺激下,白绵羊的细胞核与黑脸羊的无核卵子融合到一起,开始分裂、发育,成为胚胎,植入母羊的子宫里继续发育。在277个小时成功与细胞核融合的卵子中,只有29个存活下来,被移植到13头母羊体内。移植手术后148天,1996年7月5日,一只羊羔诞生了——1/277的成功率,其他的都失败了。直到它去世的时候,克隆技术这种低得惊人的成功率,仍然没有实质性的改善。这也是科学界普遍不相信雷尔教派的克隆女婴“夏娃”身份真实性的一个原因。

  威尔穆特以他喜爱的美国乡村音乐女歌手多利·帕顿(Dolly Parton)的名字为自己的得意之作命名。1997年2月23日这头羊的身份向全世界披露后,世上知道它的人恐怕比知道这位歌手的多得多。一头全白的小羊羔,依偎在生下它但与它毫无血缘关系的代育母亲——一头苏格兰黑脸羊旁边,这张著名的照片向世人显示,生物技术的新时代来临了。它是那头芬·多塞特白绵羊的翻版(准确地说,在细胞核遗传信息上是它的翻版。还有少量遗传信息存储在细胞质的线粒体内,多利的线粒体特征与那头提供卵子的苏格兰黑脸羊相同)。一时间,公众欢呼、兴奋或恐惧、茫然,弗兰肯斯坦、潘多拉的盒子和“科学是一把双刃剑”成为流行语汇,有人展望克隆优良家畜品种或大熊猫的美好前景,有人喊着克隆人或不许克隆人,有的科学家加紧克隆其他动物,还有科学家把他们培育的胚胎细胞克隆动物推出来分一点光芒,给局面平添了热闹与混乱。

  1998年2月,曾有科学家对多利作为体细胞克隆动物的真实性提出质疑。在怀孕的动物体内,可能会有少量胚胎细胞沿血液循环系统到达乳腺部位,因此这些科学家提出,威尔穆特等人是否恰好碰到了一个这样的胚胎细胞、多利是否仍然是胚胎细胞克隆的结果。汉纳研究所还保存着一些多利的基因母亲的乳腺细胞,DNA分析很快证明,多利的确是体细胞克隆的产物,并不存在胚胎细胞混杂的可能性。

  此后,克隆鼠、克隆牛等多种克隆动物纷纷问世。第一个克隆人在好几年的“只听楼梯响、不见人下来”之后,也终于在2002年底“据说”诞生了,但没有证据,科学界未予承认。至今,科学家对克隆过程仍有点知其然而不知其所以然的味道。为什么体细胞核与卵子融合后能够发育?有人猜测,可能是低营养环境中的挨饿状态使体细胞休眠,大多数基因关闭,从而失去了体细胞的专门特征,变得与胚胎细胞相似。不过这仅仅是猜测,并未得到证明。

  充满困扰的一生

  克隆过程的成功率一直非常低,流产、畸形等问题较多。这是由于克隆本身的问题,还是仅仅因为技术不够成熟对DNA造成了伤害?人们对此还无法问答。作为第一头体细胞克隆动物,多利的健康状况受到密切关注,因为它可能代表着其他克隆动物的命运。多利一生的大部分时候过着优裕的明星生活,它善于应付公众场合,毫不怕人,在镜头前有着良好的风度。与公羊“戴维”交配后,多利于1998年4月生下第一个孩子邦尼,后来又生育了两胎,一共有6个孩子,其中一个夭折。从生育方面来看,它与普通母羊并没有不同。在2002年初被发现患有关节炎之前,多利几乎是完全健康而正常的,除了由于访客喂食太多而一度需要减肥。

  1999年5月,罗斯林研究所和PPL公司宣布,多利的染色体端粒比同年龄的绵羊要短,引起了人们对克隆动物是否会早衰的担忧。端粒是染色体两端的一种结构,对染色体起保护作用,有点像鞋带两头起固定作用的塑料或金属扣。细胞每分裂一次,端粒就变短一点,短到一定程度,细胞就不再分裂,而启动自杀程序。端粒以及修补它的端粒酶,是近年来衰老和癌症研究中的一个热点。许多科学家认为,端粒在动物的衰老过程中可能起着重要作用。一些人担心,克隆动物的端粒注定较短,是一个不可避免的根本问题。另一些人认为,多利的端粒较短可能是克隆过程的技术问题所致,这不一定是体细胞克隆中的普遍现象,有望随着技术的进步而消除。譬如美国科学家用克隆鼠培育克隆鼠,一共培育了6代(最后一代惟一的一只克隆鼠被别的实验鼠吃掉,实验被迫中止),并没有发现端粒一代一代缩短的现象。由于克隆动物数量不多,而且普遍比较年轻,因此还难以判断哪一种说法正确。端粒与衰老之间的关系究竟是什么、端粒较短是否一定导致早衰,也是尚未确定的事情,这使得问题更加复杂。克隆技术可能带来健康问题,是多利的创造者们强烈反对克隆人的直接理由:在目前的技术水平下克隆人,对克隆出来的人太不负责任了。

  2002年1月,罗斯林研究所透露,多利被发现患有关节炎。这引起了有关克隆动物健康问题的新一轮骚动。绵羊患关节炎是常见的事,但多利患病的部位是左后腿关节,并不多见。威尔穆特说,这可能意味着现行的克隆技术效率低,但多利患病的原因究竟是克隆过程造成的遗传缺陷,还是纯属偶然,可能永远也弄不清楚。与主张动物权利的人士的观点相反,他强调,对动物进行克隆研究不应该因此停止。相反,要进一步研究,弄清楚其中的机制。此后,罗斯林研究所限制了外界与多利的接触。

  2003年2月14日,研究所宣布,多利由于患进行性肺部感染(进行性疾病为症状不断恶化的疾病),被实施了安乐死。如同关节炎一样,肺部感染也是老年绵羊常见的疾病,像多利这样长期在室内生活的羊尤其如此。但绵羊通常能活12年左右,6岁半的多利可以说正当盛年,并不算老,它的肺病究竟与克隆有没有关系,又是一个难以搞清楚的问题。目前研究人员正对多利的遗体进行详细检查,科学界对此十分关注,尽管检查结果未必能对上述问题得出确切答案。威尔穆特对媒体表示,多利之死使他“极度失望”。他提醒其他科学家要对克隆动物的健康状态作持续观察。

  在几年前,罗斯林研究所已经对多利的后事作好了安排。遗体检查完毕之后,它将被做成标本,在苏格兰国家博物馆向公众展出。理论上,伦敦自然历史博物馆或科学博物馆更适合安置这只科学史上最尊贵、最著名的绵羊,但苏格兰科学家们自有他们的理由:“因为她是一只苏格兰羊。”

  全球反对“克隆人”

  11月25日,美国先进细胞技术公司宣布该公司首次用克隆技术培育出人体胚胎细胞,在世界各地引起轩然大波,反对之声此起彼伏。

  虽然该公司称他们的目的不是克隆人,而是利用克隆技术治疗疾病,但还是遭到众多批评。美国总统布什表示,百分之百反对任何形式的人类克隆。美国国会参议员则称,将会很快通过法案禁止所有克隆研究。巴西、德国、意大利等国和欧盟的发言人也均对此发表反对意见,认为科学研究不应超过伦理界限,有必要加强立法。

  不过,美国参议院多数党领袖达施勒的态度比较中立,他建议国会应该把生殖性的克隆实验和治疗性的克隆区分开来。

  世界上第一头克隆羊“多利”的创造者之一维尔穆特赞同这一建议。维尔穆特一直反对克隆人,他认为,先进技术细胞公司更可能是出于商业目的,而不是技术上的考虑,从科学成就上来说,他们取得的不过是个小突破。

  在科学界内,不少生物学家对这一做法则嗤之以鼻,认为这一实验结果没有科学意义,而且是对生物伦理的严重挑衅。法国国家农艺学研究所动物克隆专家让·保罗·勒纳尔表示, 先进细胞技术公司所使用的方法实际上就是克隆多利羊的方法,而且美国科学家仅获得含有6个细胞的人类早期胚胎远不能满足需要。

  美国宾夕法尼亚大学生物伦理学家麦吉博士甚至怀疑先进细胞技术公司宣布的真实性,因为实验的很多细节还没有公开。

我国克隆技术发展简史

  1965年生物学家童第周对金鱼、鲫鱼进行细胞核移植。

  1990年1.西北农业大学畜牧所克隆一只山羊。

  1992年江苏农科院克隆一只兔子。2.中科院克隆了一只青蛙。(实验失败)

  1993年中科院发育生物学研究所与扬州大学农学院携手合作,克隆一只山羊。

  1995年1.华南师范大学与广西农业大学合作,克隆一头奶牛和黄牛的杂种牛。2.西北农业大学畜牧所克隆六头猪。

  1996年1.湖南医科大学人类生殖工程研究所克隆六只老鼠。2.中国农科院畜牧所克隆一头公牛。

  (以上为胚胎细胞克隆研究)

  1999年1.中国科学家周琪在法国获得卵丘细胞克隆小鼠,在国际上首次验证了小鼠成年体细胞克隆工作的可重复性,于2000年5月用胚胎干细胞克隆出小鼠“哈尔滨”,并于2000年10月获得第一只不采用“多莉羊”专利技术的克隆牛。2.中国科学院动物研究所研究员陈大元领导的小组将大熊猫的体细胞植入去核后的兔卵细胞中,成功地培育出了大熊猫的早期胚胎。

  1999年和2000年扬州大学与中科院发育所合作,用携带外源基因的体细胞克隆出转基因的山羊。

  2000年我国生物胚胎专家张涌在西北农林科技大学种羊场接生了一只雌性体细胞克隆山羊“阳阳”。“阳阳”经自然受孕产下一对混血儿女,“阳阳”的生产可以证明体细胞克隆山羊和胚胎克隆山羊具有与普通山羊一样的生育繁殖能力。2002年我国首批成年体细胞克隆牛群体诞生。

我国正在规范干细胞和克隆技术研究

克隆人离我们只有一步之遥,如何让克隆技术不是给人们出难题,而是在人类可以控制的范围内最大限度地造福人类?

北京大学干细胞研究中心首席科学家李凌松教授:“目前公认的国际规范有三点,一是坚决反对克隆人,二是不能将人的精原细胞与动物杂交,三是对用于实验的胚胎干细胞来源要进行限制并作出具体规定。在我国相关规定和法律没有出台之前,我们的研究将按照国际规范行事。”

  “对于一些国际规范模糊不清的‘灰色区域’,不同国家做法也不一样,比如信奉基督教的英国人规定,体外授精14天后的受精卵不得用于实验,而以色列则没有这样的规定,对于这些‘灰色区域’,我们要根据自己的国情具体分析。”

  据了解,目前,虽然国际上普遍对克隆人即生殖性克隆持反对态度,但对治疗性克隆,也就是利用克隆技术获得人类干细胞以用于对病变组织和器官进行替代治疗,则基本认同。但专家认为,目前能用于临床的治疗性克隆技术尚处于细胞替代性治疗阶段,真正克隆出可用于移植的人类组织和器官,现在还为时尚早。  “干细胞和克隆研究需要相当的技术、先进的设备和良好的道德基础,”李教授强调说,“涉及这个领域的研究机构必须具备相当的实力和资质,否则很容易造成失控。”

  据悉,目前,一个由国家有关部门召集、有生物学家和伦理学家参与的专家小组正在对我国干细胞及克隆技术研究现状进行评议,一个旨在规范我国干细胞和克隆技术研究的“审查委员会”正在酝酿之中。

  四、科技随笔:克隆的理性发展方向

  每当出现重大克隆进展时,各种警告和反对声便不绝于耳。最近美国先进细胞技术公司宣布通过克隆制造出了人类胚胎之后,批评言论又是不断。对于克隆技术研究,人们应该一分为二地看待这个问题,以促进克隆技术的安全使用和健康发展。

  不妨先回顾一下先进细胞技术公司的成果:这家公司研究人员将人类体细胞的遗传物质与去除了遗传物质的人卵细胞空壳融合,然后诱导融合后的细胞发育:研究人员得到3个早期胚胎,其中两个发育到4细胞阶段,另一个至少发育到6细胞阶段。由于这证明人体单个细胞的遗传物质能被诱导发育成为幼胚胎,克隆人在技术上离现实可谓一步之遥。

  争论由此而生。批评者说,因为它用一个单亲制造了人类的开端,这一进展在伦理道德上是危险的。反对者说,即使不为克隆人,为获取干细胞而破坏克隆胚胎的做法也是不道德的。但先进细胞技术公司的科学家称,他们的目标不是制造克隆人,而是为了开发人类疾病的治疗方法,其工作是“正义的”。