光明健能酸奶价格150g:葡萄糖、几丁质、纤维素、激素(荷尔蒙)、胰岛素

来源:百度文库 编辑:偶看新闻 时间:2024/04/24 21:44:12

 

 

  糖类物质是多羟基(2个或以上)的醛类(aldehyde)或酮类(Ketone)化合物,在水解后能变成以上两者之一的有机化合物。在化学上,由于其由碳、氢、氧元素构成,在化学式的表现上类似于“碳”与“水”聚合,故又称之为碳水化合物。

糖的历史

  在古代,人们利用蜂蜜来制造糖果。最先是在罗马周围的地区出现了糖衣杏仁这种糖果。制造者用蜂蜜将一个杏仁裹起来,放在太阳底下晒干,就可以得到糖衣杏仁了。这种糖果一直以来广受人们的喜爱。位于MEUSE的VERDUN地区是今天最有名的糖衣杏仁制造地。这里的BRAQUIER公司制造多种形状和颜色的糖衣果仁,有巧克力的、烤杏仁的、开心果的,均采用古老的方法精心制作。制造糖衣果仁的过程超过10天。

  FLAVIGNY修道院的茴香糖相比之下要小一点、圆一点。这种糖果是1650年的时候在位于BOURGOGNE地区的FLAVIGNY小城被发明的,现在已被出口到20个国家。

  由于糖果的价格昂贵,直到18世纪还是只有贵族才能品尝到它。但是随着殖民地贸易的兴起,蔗糖已不再是什么稀罕的东西,众多的糖果制造商在这个时候开始试验各种糖果的配方,大规模地生产糖果,从而使糖果进入平常百姓家。这就是今天我们能见到如此众多的糖果的重要原因。

制糖技术史

  史前时期,人类就已知道从鲜果、蜂蜜、植物中摄取甜味食物。后发展为从谷物中制取饴糖,继而发展为从甘蔗甜菜中制糖等。制糖历史大致经历了早期制糖、手工业制糖和机械化制糖3个阶段。

  早期制糖阶段 中国是世界上最早制糖的国家之一。早期制得的糖主要有饴糖、蔗糖,而饴糖占有更重要的地位。

  制饴 将谷物用来酿酒造糖是人类的一大进步。中国西周的《诗经·大雅》中有“周原膴膴,堇荼如饴”的诗句,意思是周的土地十分肥美,连堇菜和苦苣也象饴糖一样甜。说明远在西周时就已有饴糖。饴糖被认为是世界上最早制造出来的糖。饴糖属淀粉糖,故也可以说,淀粉糖的历史最为悠久。

  饴糖是一种以米(淀粉)和以麦芽经过糖化熬煮而成的糖,呈粘稠状,俗称麦芽糖。自西周创制以来,民间流传普遍,广泛食用。西周至汉代的史书中都有饴糖食用、制作的记载。其中,北魏贾思勰所著的《齐民要术》(第89篇“饧”)记述最为详尽。书中对饴糖制作的方法、步骤、要点等都作了叙述,为后人长期沿用。时至今日,这类淀粉糖的甜味剂仍有生产,也有较好的市场,在制糖业中仍有一定地位。但通常所说的制糖是指以甘蔗、甜菜为原料制糖。

  甘蔗制糖 甘蔗制糖最早见于记载的是公元前 300年的印度的《吠陀经》和中国的《楚辞》。这两个国家是世界上最早的植蔗国,也是两大甘蔗制糖发源地。在世界早期制糖史上,中国和印度占有重要地位。

  在中国,最早记载甘蔗种植的是东周时代。公元前4世纪的战国时期,已有对甘蔗初步加工的记载。屈原的《楚辞·招魂》中有这样的诗句:“胹鳖炮羔,有柘浆些”。这里的“柘”即是蔗,“柘浆”是从甘蔗中取得的汁。说明战国时代,楚国已能对甘蔗进行原始加工。

  西晋陈寿所著的《三国志·吴书·孙亮传》中,有"亮使黄门以银椀并盖,就中藏吏取交州所献甘蔗饧……"的记述。交州在现今的广东、广西一带,与上述的楚国同是中国的南方,是甘蔗制糖最早的地区。甘蔗饧是一种液体糖,呈粘稠状,是将甘蔗汁浓缩加工至较高浓度(粘稠),便于储存食用。这里的加工技术已经提高了一大步。

  东汉张衡著的《七辨》中,有“沙饴石蜜”之句。这里“沙饴”二字,是指制得的糖有微小的晶体,可看作是砂糖的雏形。

  6世纪时陶弘景著的《名医别录》中写到:“蔗出江东为胜,卢陵也有好者,广州一种数年生,皆大如竹,长丈余,取汁为沙糖,甚益人。”这里描述的种蔗区域更加广阔了,种蔗的技术也已提高,且已经制出砂糖。这种砂糖是将蔗汁浓缩至自然起晶,成为带蜜的糖。比先前的甘蔗饧的加工技术又提高一步。

  手工业制糖阶段 自战国时代开始从甘蔗中取得蔗浆以后,种植甘蔗日益兴盛,甘蔗制糖技术逐步提高,经近千年的发展,至唐宋年间,已形成了颇具规模的作坊式制糖业。

  公元647年,唐太宗派人去印度学习熬糖法。欧阳修、宋祁撰的《新唐书》中有这样的记载:“……贞观二十一年,始遣使自通天子,献波罗树,树类白杨。太宗遣使取熬糖法,即诏扬州诸蔗,柞沈如其剂,色味愈西域远甚。”说明在中、印频繁的文化、科技交流中,其中也有制糖技术的经验交流。

  从唐宋开始形成的手工业制糖以来,制糖技术逐步得到发展,一些新的技术、新的工艺相继出现,土法制取的白糖、冰糖等新品种也相继出现,同时也产生了一些制糖的理论著作。

  公元674年,中国发明用滴漏法制取土白糖。该法用一套漏斗形的陶器,配以瓦缸和其他小设施,将蔗汁熬至相当浓度后倒入瓦溜(漏斗形陶器)中,从上淋入黄泥浆,借助黄泥浆的吸附脱色制取土白糖。白糖的出现,标志着制糖技术达到了一个新的高度。这种土法制糖在中国沿用了千余年。

  唐大历年间(766~779),四川遂宁一带出现用甘蔗制取冰糖。冰糖的制作,为制糖业增添了独特的产品。

  唐宋制糖手工业昌盛,所产之糖的品种和质量都达到相当高的水平。糖产品不仅销售国内各地,还远销波斯、罗马等地,促进了国际间的贸易往来。广泛兴起的制糖手工业,扩展至全国的很多区域,如现今的广东、广西、福建、四川等地。宋、元期间,大量的闽、粤移民至台湾,同时也带去了种蔗制糖技术。由于台湾气候适宜于种植甘蔗,制糖业很快得到发展,并成为中国主要制糖基地之一。

  8世纪中叶,中国制糖技术传到日本。13世纪左右,传入爪哇,成为该岛糖业的起源。15~16世纪,中国的侨民也在菲律宾、夏威夷等地传播制糖法。

  当中国的甘蔗制糖技术向外传播的时候,世界上的另一个甘蔗制糖发源地印度,也不断向各国传播甘蔗制糖技术。7世纪,阿拉伯人把印度的甘蔗种植技术传入西班牙、意大利。自此,地中海沿岸开始有甘蔗种植,随后甘蔗的种植技术又传入北美洲的一些国家。15世纪末,哥伦布将甘蔗制糖技术传至西印度群岛,很快又传至古巴、波多黎各。15世纪20~30年代,甘蔗制糖技术先后传到墨西哥、巴西、秘鲁等,不久,甘蔗制糖业在南北美洲都发展起来。

  在长期的制糖实践中,很多制糖方法逐步被总结出来。 北宋王灼于 1130年间撰写出中国第一部制糖专著──《糖霜谱》。全书共分7篇,内容丰富,分别记述了中国制糖发展的历史、甘蔗的种植方法、制糖的设备(包括压榨及煮炼设备)、工艺过程、糖霜性味、用途、糖业经济等。1637年初刊的明代宋应星所著《天工开物》卷六(《甘嗜》)中,记述了种蔗、制糖的各种方法,比《糖霜谱》一书更系统、更详尽。这些方法,在中国民间一直沿用到20世纪。书中记述的采用牛拉石辘(或木辘)多次压榨取汁的方法(压榨法),与现代的甘蔗多重压榨原理相似。在蔗汁澄清方面,书中首次总结了石灰法澄清工艺,其原理在现代的制糖业中仍有沿用。“甘嗜”中总结的具有系统性的压榨取汁、石灰法澄清、浓缩煮糖等手工业制糖工艺,成为现代机械化制糖的工艺基础。

  机械化制糖阶段 18世纪末至19世纪初,甜菜制糖的成功极大地推动了制糖业的发展,直接导致了制糖业的机械化。

  甜菜制糖业的兴起 长期以来,用来制糖的主要原料是甘蔗,而甘蔗只能生长于热带、亚热带地区,寒冷地区则不能种蔗制糖。18世纪末期,一种新的制糖原料──甜菜终于被发现,给制糖业的发展带来重大突破。

  1747年,德国化学家A.马格拉夫发现甜菜块根中含有蔗糖,但未受到重视。1786年,马格拉夫的学生F.K.阿哈尔德在柏林近郊试种甜菜成功,实现了从甜菜中提取蔗糖并开始进行甜菜的选择和育种工作。1799年阿哈尔德发表论文,宣告可以用甜菜制糖。1802年,阿哈尔德在东欧西里西亚附近的库内恩建立了世界上第一座甜菜糖厂。同年,俄国也建成一座甜菜糖厂。1811年,法国又建成一座甜菜糖厂。此后,欧洲各国相继建厂,甜菜制糖业很快兴起。1810年,俄国的甜菜糖厂已达10座。1824年,乌克兰开始建立甜菜糖厂,此后15~20年间,已发展到67座,乌克兰遂成为俄国的主要产糖区。

  甜菜制糖业在欧洲的迅速崛起和发展,有着重要的政治、经济原因。19世纪初,拿破仑对不列颠岛实行封锁,英国则从海上对欧洲大陆实行经济封锁,欧洲海上运输因之受阻,一些急需物资和食品如甘蔗糖等无法从海上运往欧洲大陆,这种情形客观上促使了欧洲甜菜制糖业的迅速发展。不久,甜菜制糖技术便越过大西洋,传播到美洲,继而传播到亚洲,遍及世界各地。

  机械化制糖业的发展 甜菜糖的发源和生产主要是在欧洲,而19世纪又是欧洲资本主义发展的时代,先进的工业和发达的科学技术,给制糖业实行机械化提供了很多有利条件。现代机械化制糖的工艺和设备大多始于欧洲的甜菜制糖业。19世纪初至19世纪60年代的这段时间,是机械化制糖工业的主要形成时期,许多制糖新工艺新设备不断涌现。甜菜制糖业在这段时间里,完成了渗出提汁、糖汁加灰二次碳酸饱充清净、多效蒸发、真空煮糖结晶和离心分蜜成糖等基本技术。

  19世纪初期,良好的吸附剂骨炭已应用于甜菜糖汁的脱色,并取得了较好效果。1821年,M.de东巴勒将甜菜块根切成薄片,以热水浸渍提取糖分,改变了早期用压榨甜菜取汁的做法,成为渗出法的先导。到1830年,东巴勒发明渗出法。但由于未找到理想的澄清方法,取得的糖汁不易澄清。1840年,库尔曼发明二氧化碳饱充法,在澄清糖汁方面取得突破性的进展。1843年多效蒸发罐的发明使糖汁得以蒸浓。同时,采用高效能的离心分蜜工艺使糖膏中糖晶粒和糖蜜完全分离,得到的不再是带蜜的糖,而是干净的砂糖。1849年,卢梭发明了碳酸法制糖工艺。1849年,应用二氧化硫漂白糖汁取代成本较高的骨炭,糖汁的清净技术进一步提高。1859年,佩里耶和波塞茨将碳酸法改良为双碳酸法,澄清效果显著提高,但糖汁的沉淀颗粒仍不易除去。1864年,德耐克发明过滤机使糖汁沉淀颗粒得以分离。同年,奥地利人J.罗伯特制成间歇式渗出罐组,它与双碳酸法清净工艺相配合后被普遍采用。20世纪发展了连续渗出器,逐渐取代了罗伯特渗出罐。至此,较完善的碳酸法制糖工艺基本形成,成为现代制糖技术的先导。

  由于甜菜制糖大部分工艺也适用于甘蔗制糖,因而很快被甘蔗制糖业所采用,但甘蔗制糖和甜菜制糖在澄清工艺上有较大的不同。在取汁方面,甘蔗糖厂仍基本上采用压榨取汁方式。18世纪末甘蔗制糖已采用了三辊压榨机。

  19世纪初期,真空结晶(煮糖)罐制造成功。中期,已开始用蒸汽机带动压榨机,并开始采用离心分蜜机。此后,随着制糖工艺渐趋成熟和适合于工业化生产的设备不断出现,制糖业遂进入大规模工业化生产阶段。

  中国机械化制糖 19世纪末至20世纪初,是中国机械化制糖的酝酿、探索时期。20世纪30年代,中国兴起机械化制糖热潮,但未形成机械化制糖工业体系,制糖业基本上还处于手工业阶段。1949年后,不断发展成为完整的现代制糖工业体系。

  1878年,英商怡和洋行在香港设中华精糖公司,机器购自英国,以土糖为原料生产精炼糖,每日能处理4000担土糖。1880年,怡和洋行又在广东汕头角石开设分厂。此外,英国商人在香港的太古洋行也创办太古炼糖公司。继英国之后,美国、日本等商人也来中国建立机械制糖厂,制糖工艺、技术、设备均从外国引入。由于社会动荡、经营管理不善等原因,这些糖厂未能长久生存下去。

  1905年,中国东北开始种植糖用甜菜。1908年建成一座日加工甜菜350吨的甜菜制糖厂(阿城糖厂)。

  1915年又建成一座日加工甜菜 350吨的甜菜制糖厂(呼兰糖厂)。

  1916年,日本人在中国东北成立“南满洲制糖株式会社”,并在沈阳郊区建立一座日加工500吨甜菜的奉天糖厂,1917年投产。1922年又在铁岭建成铁岭糖厂,这两座糖厂都于1926年停产。   1920年,北京溥益公司在山东济南兴建溥益糖厂,于1921年投产,1929年停产。

  20世纪30年代以前,不论是甜菜制糖厂,或是甘蔗制糖厂,或是精炼糖厂;不论是外资兴办,或是民族资本创办的糖厂,都没有成功,中国的机械化制糖业未能形成,仍然处于手工业制糖阶段。牛拉石辘压取甘蔗的古老制糖法依然盛行,土糖寮、土糖房、小作坊式的制糖遍布城乡民间。糖的产量及质量都不及先进国家。尚需大量进口食糖。1929年,食糖进口量达最高峰(7.4亿千克),价值银一万万两,居全国进口货物的第二位。

  30年代开始,中国限制洋糖任意进口,保护国内糖业的发展。1929~1933年,资本主义世界爆发严重经济危机,许多公司、商人急于推销滞销的货物和积压设备。中国成为他们资本输出的一大市场。例如,美国的檀香山铁工厂,捷克斯可达工厂,即在此时来到广东,推销他们积压的制糖设备。广东省的军阀企图通过创办糖业,充实自己经济实力,巩固和扩大自己的政治地位,极力支持、兴办机械化制糖业。广东制糖历史悠久,制糖原料(甘蔗)丰富,客观上也利于制糖业的发展。1933年8月至1936年1月,在檀香山铁工厂、捷克斯可达厂两家厂商的承包下,在广东建成了市头、顺德、东莞、新造、惠阳、揭阳等 6座机械化制糖厂。其设计的总生产能力为每天压榨甘蔗7000吨,每天产白糖700吨。机器设备全部由外国进口,工艺技术、设备规模都是空前的。广东遂成为全国机械化制糖业的重要基地。

  广东兴办机械化制糖业的热潮,也波及可以用甘蔗制糖的其他省份,继之纷纷建立机械化糖厂。但由于时局动乱,工业基础薄弱,这些新式的机械化制糖厂,未能得到发展和繁荣,不少糖厂被迫关闭、停业。

  20世纪以来,台湾省机械化制糖业发展较快。最早的机器制糖厂建立于1901年,至1945年,全省已有42家机械化制糖厂。1934~1943年间,台湾糖业发展迅速,糖产量剧增,并有大量出口。1938~1939年制糖期,机制糖产量达到137万吨。

  1949年后,中国大陆的制糖业不断得到发展。甘蔗制糖业主要分布在广东、广西、云南、福建、海南、四川等地。甜菜制糖业集中在黑龙江、内蒙古、吉林、新疆等地。甘蔗糖与甜菜糖的产量之比约4:1。发展到 80年代,中国已成为世界上制糖大国之一。

我国糖料和食糖生产发展情况

  1、糖料亩产、面积和食糖产量波动中上升

  经过建国以来五十多年、特别是改革开放以来的建设,中国糖业获得了巨大的发展。全国糖料播种面积由1949年186.2万亩扩大到2003年2485.5万亩。其中,甘蔗从162.3万亩增加到2113.5万亩,甜菜从23.9万亩增加到372万亩(见图2)。值得注意的是我国甜菜种植面积近几年呈萎缩趋势,这是由于近年甜菜比较效益逐年下降,在新疆与棉花和西红柿争地,在东北和粮食,也就是大豆和玉米争地。2004年农产品价格全面上涨,许多糖农改种其他作物,甜菜糖厂很难征到定单,闲置了很多压榨能力。

  甘蔗亩产从1949年的1.6吨提高到2003年的4.27吨,甜菜亩产从0.8吨提高到1.67吨。总体上看糖料亩产近20年来都呈比较平稳的上升趋势(见图3)。甘蔗亩产最高地区是广西,每亩达到4.6吨;甜菜亩产最高的地区是新疆,由于高糖甜菜品种推广速度较快,亩产已经高达3.12吨。随着高糖品种推广速度的增加,甘蔗和甜菜亩产还有望进一步提高。

  与糖料面积同步起伏的是糖料和食糖的产量。全国食糖产量由1949/1950榨季的26.1万吨提高到2002/2003榨季的1063.7万吨(其中,甘蔗糖产量由24万吨提高到940.6万吨,甜菜糖产量由2万吨提高到124.1万吨)。如图4所示,我国甘蔗糖产量一路上升,03/04榨季达历史最高水平944万吨;而甜菜糖产量近年却呈下滑趋势,目前只有59万吨,占总产量的份额只有5.9%,相当于历史最高水平1991年的36%。

  2、蔗糖生产向优势地区集中

  90年代以来,我国甘蔗生产区域布局发生了剧烈变化。由于东南沿海地区产业结构升级和农业结构调整,甘蔗生产局逐渐向西部地区转移。甘蔗原产地如广东、海南、福建的种植面积在过去十年间大幅度下降。广东和福建的蔗糖产量分别比10年前下降46%和77%。全国甘蔗业生产进一步向优势地区集中。目前最大的蔗糖基地广西种植面积已在1000万亩以上,占全国总面积的45%以上;广西、云南、广东、海南和新疆五大产区产糖量为960万吨,占全国产糖总量的96%,其中广西和云南产量占全国的58%和19%。

  3、制糖企业发展迅猛

  我国制糖企业也获得了长足的发展。全国机制糖厂由1949年的3家增加到2000年的539家。2000年我国糖业进行了史无前例的结构调整,国家拿出120多亿资金关闭破产150家制糖企业。经过结构调整,淘汰落后生产能力,全国糖厂由539家减少到359家,保留制糖能力780万吨,其中甘蔗和甜菜糖厂分别为340家和19家、制糖能力分别为695万吨和85万吨,主要分布在广西、云南、广东、海南、新疆、内蒙和黑龙江等省区。2002/2003榨季,全国共有制糖生产企业(集团)213家,开工糖厂315家,其中:甜菜糖生产企业(集团)39家,糖厂40家;甘蔗糖生产企业(集团)165家,糖厂266家;炼糖企业9家。目前,产糖量超过10万吨的糖业集团已有20个,合计产糖670万吨,占全国产糖量的67%。

  目前制糖业共有工业职工20多万人,与糖业生产相关的农业人口近4000万人;已经建成了包括糖业教学、科研、设计、设备制造、土建安装的体系,可以自主进行糖业研发、建设。糖厂综合利用也获得了巨大发展,以食糖副产品蔗渣、废(菜)丝、废蜜为原料的产品有:纸、纸浆板,纤维板,食用、药用、饲料酵母,甜菜颗粒粕,柠檬酸,味精,糖蜜酒精等。据不完全统计,在我国以食糖为原料或辅料的食品共有3000多个品种。

糖的化学分类

  糖类物质是多羟基醛或酮,据此可分为醛糖(aldose)和酮糖(ketose)。

  糖还可根据碳原子数分为丙糖(triose),丁糖(terose),戊糖(pentose)、己糖(hexose)。最简单的糖类就是丙糖(甘油醛和二羟丙酮)由于绝大多数的糖类化合物都可以用通式Cn (H2O)n表示,所以过去人们一直认为糖类是碳与水的化合物,称为碳水化合物。现在已经发现这种称呼并不恰当,只是沿用已久,仍有许多人称之为碳水化合物。

  糖还可根据结构单元数目多少分为:(1)单糖(monosaccharide):不能被水解成更小分子的糖。(2)寡糖(disaccharide):2-6个单糖分子脱水缩合而成,以双糖最为普遍,意义也较大。(3)多糖(polysaccharide):均一性多糖:淀粉、糖原、纤维素、半纤维素、几丁质(壳多糖)不均一性多糖:糖胺多糖类(透明质酸、硫酸软骨素、硫酸皮肤素等)(4)结合糖(复合糖,糖缀合物,glycoconjugate):糖脂、糖蛋白(蛋白聚糖)、糖-核苷酸等(5)糖的衍生物:糖醇、糖酸、糖胺、糖苷

糖类的生物学功能

  (1) 提供能量。植物的淀粉和动物的糖原都是能量的储存形式。 (2) 物质代谢的碳骨架,为蛋白质、核酸、脂类的合成提供碳骨架。 (3) 细胞的骨架。纤维素、半纤维素、木质素是植物细胞壁的主要成分,肽聚糖是原核生物细胞壁的主要成分。 (4) 细胞间识别和生物分子间的识别。细胞膜表面糖蛋白的寡糖链参与细胞间的识别。一些细胞的细胞膜表面含有糖分子或寡糖链,构成细胞的天线,参与细胞通信。红细胞表面ABO血型决定簇就含有岩藻糖。

糖怎么被人体吸收

  糖包括蔗糖(红糖、白糖、砂糖、黄糖)、葡萄糖、果糖、半乳糖、乳糖、麦芽糖、淀粉、糊精和糖原棉花糖等。在这些糖中,除了葡萄糖、果糖和半乳糖能被人体直接吸收久,其余的糖都要在体内转化为葡萄糖后,才能被吸收利用。

糖对人体的功能

  糖的主要功能是提供热能。每克葡萄糖在人体内氧化产生4千卡能量,人体所需要的70%左右的能量由糖提供。此外,糖还是构成组织和保护肝脏功能的重要物质。

  下午2点吃糖减少车祸

  许多研究人员研究证实,只要适量摄入,掌握好吃糖最佳时机,对人体是有益的。如洗浴时,要大量出汗和消耗体力,需要补充水和热量,吃糖可防止虚脱;运动时,要消耗热能,糖比其他食物能更快提供热能;疲劳饥饿时,食糖可迅速被吸收提高血糖;当头晕恶心时,吃些糖可升血糖稳定情绪,有利恢复正常;饭后进食点糖食品,可使人在学习和工作时,精神振奋,精力充沛。据报道,美国科学家对千余名中小学生实验表明,饭后吃一些巧克力,下午1-2节课打瞌睡者才2%,而对照者(不吃巧克力)却高达11%。此外,对数百名驾驶员试验发现,当他们按要求每天下午2点吃点巧克力、甜点心或甜饮料时,车祸要少得多。

糖对人体的危害

  蔗糖是含有最高热值的碳水化合物,过量摄入会引起肥胖、动脉硬化、高血压、糖尿病以及龋齿等疾病。

  吃糖过多影响小孩长高

  吃糖过多可影响体内脂肪的消耗,造成脂肪堆积;吃糖过多,还可以影响钙质代谢。有些学者认为吃糖量如果达到总食量的16-18%,就可使体内钙质代谢紊乱,妨碍体内的钙化作用。据日本一项调查表明,小儿骨折率有所增加,他们认为糖过多是造成骨折的重要原因。

  吃糖过多,会使人产生饱腹感,食欲不佳,影响食物的摄入量,进而导致多种营养素的缺乏。儿童长期高糖饮食,直接影响儿童骨骼的生长发育,导致佝偻病等。儿童多吃糖如果又不注意口腔卫生,则为口腔的细菌提供了生长繁殖的良好条件,容易引起龋齿和口腔溃疡。

  为了避免龋齿、近视、软骨症、消化道等疾病,世界卫生组织呼吁:家长不要让孩子吃太多的甜食。

  糖是人类赖以生存的重要物质之一

  糖是人体三大主要营养素之一,是人体热能的主要来源。糖供给人体的热能约占人体所需总热能的60~70%,除纤维素以外,一切糖类物质都是热能的来源。

  糖是自然界中最丰富的有机化合物。糖类主要以各种不同的淀粉、糖、纤维素的形式存在于粮、谷、薯类、豆类以及米面制品和蔬菜水果中。在植物中约占其干物质的80%,在动物性食品中糖很少,约占其干物质的2%。

  甜食吃得太多易患各种疾病

  有些专家认为,糖比烟和含酒精的饮料对人体的危害还要大。世界卫生组织曾对23个国家人口死亡原因作了调查后得出结论:嗜糖之害,甚于吸烟,长期食用含糖量高的食物会使人的寿命缩短20年。因此,世界卫生组织于1995年提出“全球戒糖”的新口号。世界卫生组织调查发现,食糖摄人过多会导致心脏病、高血压、血管硬化症及脑溢血、糖尿病等。

  长期高糖饮食,会使人体内环境失调,进而给人体健康造成种种危害。由于糖属酸性物质,吃糖过量会改变人体血液的酸碱度,呈酸性体质,减弱人体白血球对外界病毒的抵御能力,使人易患各种疾病。

  长期嗜好甜食的人,容易引发多种眼病。有关专家还提出老年性白内障与甜食过多也有关。他们调查了50例白内障患者,发现其中有34%的患者有酷爱甜食的习惯,他们认为,这与葡萄糖代谢障碍有关。

  吃糖引发肥胖病没有依据

  我国许多食品营养及医学界专家认为,单纯性肥胖是由于总热量的摄入与消耗之间失去平衡所致,不能把肥胖归结于糖。美国食品和药物管理局特别工作小组对食糖研究的结果,认为食糖引发肥胖是没有根据的。理由是:每汤匙食糖含热量16卡,而每汤匙黄油或其他脂类食物含热量是100卡,所以食糖不是使人发胖的原因。

  瑞典几位医学家的研究更进一步证实,食用糖不会导致人体内形成脂肪层,这一研究成果被称为“小型革命”。根据医学家的观察,胖人的食物中脂肪总是比糖多,所以减肥的人首先应减少食用脂肪性食物。欧洲的主要饮食营养学家、瑞典的阿斯特鲁认为,如果不滥食过多脂肪食物,那就可以安心地提高糖的用量,而不必担心肥胖。

  食用适量,不会影响健康

  近年来,由于报道糖对人体健康危害的文章越来越多,一些片面宣传的舆论使人们对进食糖顾虑重重,感到“吃糖可怕”。美国食品和药物管理局特别工作小组对食糖研究的结论是:食糖除导致龋齿外,对引起其他疾病是没有根据的。作为合理搭配饮食的一部分,吃糖如同吃其他东西一样,只要食用适量,是不会有碍健康的。

糖的甜味的分类

  人们都喜欢甜味,甜味是与糖联系着的。蔗糖、葡萄糖、麦芽糖是大家熟悉的糖,它们不仅味道甜,而且还是供应人体能量的物质。蜂蜜中含有果糖和葡萄糖。果糖是最甜的糖。果糖、蔗糖与葡萄糖的甜味的比例,根据实验测定是9:5:4。

没有甜味的糖

  是不是所有的糖都有甜味呢?不是。例如,牛奶中有4%的乳糖,乳糖是没有甜味的糖。反过来说,是不是有甜味的都是糖呢?也不能这样说。例如乙二醇、甘油虽有甜味,但都不是糖。最常见的无味糖就是米饭中的淀粉。

糖是慢性毒品

  哈佛等大学的科学家发现,肥胖大都是吃糖和淀粉吃出来的。我们通常说的“糖”是指单糖(葡萄糖和果糖)和双糖(蔗糖,麦芽糖和乳糖等),有甜味。其实淀粉也是糖,是多糖,但在体内它会很快分解成单糖,进入血液后变成血糖,刺激胰岛素分泌,把未燃烧的糖转化为脂肪储藏起来。这个过程同时使血糖水平下降和营养素减少,产生饥饿感。也就是说,吃糖和淀粉会增加食量和脂肪积累,减少营养素和代谢效率!

  糖远没有你想的那么甜蜜,倒可以说它是一种“慢性毒品”,因为它会使你上瘾;短期使你舒服,长期使你屈服。科学研究发现,糖至少有“七宗罪”:

  · 可导致(2型)糖尿病

  · 可导致心血管疾病

  · 可降低智商

  · 导致肥胖

  · 破坏牙齿

  · 损坏皮肤

  · 降低精力

  记住,不要用糖果奖励小孩,因为这会使她觉得糖是健康食品!

  你最喜欢吃的东西往往是你身体最主要的敌人,例如毒品!

  医生告诉你,发生低血糖时用吃糖控制。这种方法与毒瘾发作时靠吸毒控制的实质一样:短期有效,长期有害。

  与戒毒一样,根治低血糖的办法是戒糖!

  如果你有持续低血糖,你可能有肝脏或肾上腺方面的问题,属于器质性低血糖,你需要先治疗这些疾病。但是,大部分低血糖是暂时的,属于反应性低血糖。

  反应性低血糖一般发生在餐后3-5小时、长期节食或大量运动后。如果你经常有严重的餐后低血糖,你很可能有“血糖波动”:餐后2个小时内血糖上升很高,3-5小时又下降很低。血糖波动背后的原因是“胰岛素抵抗症”:机体细胞对胰岛素不敏感,使餐后半小时到2小时血糖高居不下;而后3-5小时胰腺不得不(并且过多地)大量分泌胰岛素,使血糖大幅度下降。进一步发展可以得糖尿病。

  为了消除或“绕过”胰岛素抵抗症,你需要“低碳低糖,补充营养”,即露卡素膳食,以避免刺激胰岛素分泌。预防餐后反应性低血糖的最佳方法是戒糖,包括果糖、乳糖、蜜糖、蔗糖、白糖、葡萄糖和麦芽糖,以及白米饭、白面条和白面包等。记住,你的血糖对精制米面的反应,和对白糖一样大,比对蔗糖更大!

  如果你是糖尿病患者,你需要平衡饮食、药物和运动的时间和数量,以避免反应性低血糖。如果你正在减肥,你需要严格控制含糖食品饮料(饼干、可乐和啤酒等)、淀粉类食品(米面、土豆等)和高糖水果(菠萝、香蕉、蜜瓜等)。否则减肥可能变成了“养猪”,男人的体形象孕妇!

其他

  一种三氯蔗糖的合成方法,其特征是以蔗糖为原料,加入N,N-二甲基甲酰胺溶液,在硫酸盐固体酸催化剂或吸附在高分子载体上的硫酸盐固体酸催化剂作用下与乙酸乙酯发生酯交换反应,生成蔗糖-6-乙酸酯,蔗糖-6-乙酸酯再经氯代、醇解反应生成三氯蔗糖。本发明具有工艺简单、产品纯度高、生产成本低等优点,非常适合工业化生产。

  《糖》还是一本小说,作者棉棉;叙述了一个“问题女孩”红和她在青春迷途中邂逅的几个同样有“问题”的少男少女的故事。

  作为甜味物质,白糖、红糖和冰糖经常为人们食用。制糖方法并不复杂,把甘蔗或甜菜压出汁,滤去杂质,再往滤液中加适量的石灰水,中和其中所含的酸,再过滤,除去沉淀,将二氧化碳通入滤液,使石灰水沉淀成碳酸钙,再重复过滤,所得滤液就是蔗糖的水溶液了。将蔗糖水溶液放在真空器里减压蒸发、浓缩、冷却,就有红棕色略带粘性的结晶物析出,这就是红糖。想制造白糖,须将红糖溶于水,加入适量的骨碳或活性炭,将红糖水中有色物质吸附,再过滤,加热,浓缩,冷却滤液,一种白色晶体——白糖就出现了。白糖比红糖纯的多,但仍含一些水分,再把白糖加热至适当温度除去水分,就得到无色透明的块状大晶体——冰糖。可见,冰糖的纯度最高,也最甜。

  说起甜味物质,人们很自然想到糖精,糖精并非“糖之精华”,它不是从糖里提炼出来的,而是以又黑又臭的煤焦油为基本原料制成的。糖精没有营养价值。少量糖精对人体无害,但食用糖精过量对人体有害。所以糖精可以食用,但不可多用。

  适当食用白糖有助于提高机体对钙的吸收;但过多就会妨碍钙的吸收。冰糖养阴生津,润肺止咳,对肺燥咳嗽、干咳无痰、咯痰带血都有很好的辅助治疗作用。红糖虽杂质较多,但营养成分保留较好。它具有益气、缓中、助脾化食、补血破淤等功效,还兼具散寒止痛作用。所以,妇女因受寒体虚所致的痛经等症或是产后喝些红糖水往往效果显著。红糖对老年体弱,特别是大病初愈的人,还有极好的疗虚进补作用。另外,红糖对血管硬化能起一定预防作用,且不易诱发龋齿等牙科疾病。

 

 

葡萄糖

  

glucose 生化简写G

  葡萄糖又称为血糖玉米葡糖玉蜀黍糖,甚至简称为葡糖,是自然界分布最广且最为重要的一种单糖,它是一种多羟基醛。水溶液旋光向右,故亦称“右旋糖”。葡萄糖在生物学领域具有重要地位,是活细胞的能量来源和新陈代谢中间产物。植物可通过光合作用产生葡萄糖。在糖果制造业和医药领域有着广泛应用。

  葡萄糖是己醛糖,化学式C6H12O6,最简式:CH2O,分子量为180,白色晶体,易溶于水,味甜,熔点146℃,它的结构式如图:

  结构简式:CH2OH—CHOH—CHOH—CHOH—CHOH—CHO,与果糖(CH2OH(CHOH)3COCH2OH)互为同分异构体

  它是自然界分布最广泛的单糖。葡萄糖含五个羟基,一个醛基,具有多元醇和醛的性质。其主要化学性质是:

  (1)分子中的醛基,有还原性,能与银氨溶液反应:CH2OH-(CHOH)4-CHO+2[Ag(NH3)2]++2OH-==CH2OH-(CHOH)4-COOH+2Ag↓+H2O+4NH3,被氧化成葡萄糖酸

  (2)醛基还能被还原为己六醇

  (3)分子中有多个羟基,能与酸发生酯化反应

  (4)葡萄糖在生物体内发生氧化反应,放出热量。

  葡萄糖是生物体内新陈代谢不可缺少的营养物质。它的氧化反应放出的热量是人类生命活动所需能量的重要来源。在食品、医药工业上可直接使用,在印染制革工业中作还原剂,在制镜工业和热水瓶胆镀银工艺中常用葡萄糖作还原剂。工业上还大量用葡萄糖为原料合成维生素C[1](抗坏血酸)。

  口服葡萄糖(ORAL GLUCOSE)一般呈粉状,所以又称葡萄糖粉。天绿原生产的口服葡萄糖是以玉米淀粉为原料,采用双酶法生产的一种功能性速效营养补充品。作为人体的基本元素和最基本的医药原料,该品的作用和用途十分广泛,即可直接应用于人体,又可用于食品加工和医药化工。它能迅速增加人体能量、耐力、可用作血糖过低、感冒发烧、头晕虚脱、四肢无力及心肌炎等症的补充液,对癌症也有一定治疗作用。

  随着广大人民生活水平的提高,葡萄糖作为蔗糖的替代品应用于食品工业,为葡萄糖的应用开拓了更为广阔的领域。

  也可以吃些葡萄糖酸系列产品——

  葡萄糖酸系列产品是食品、医药等产业用途极为广泛的一种产品,在人体新陈代谢中起着重要作用,因此美国药典载有葡萄糖酸钙针剂、片剂、葡萄糖酸钾、葡萄糖酸铁等并在美国大量生产。在食品加工业非常发达的日本,食品添加剂证书上明确记载葡萄糖酸、葡萄糖酸-δ-内酯、葡萄糖酸锌、葡萄糖酸钙、葡萄糖酸亚铁、葡萄糖酸铜可作为食品添加剂,以葡萄糖为原料深加工,除可制造结晶的葡萄糖酸、葡萄糖酸-δ-内酯外,还可制造各种盐,如钾、钠、钙、镁、锌、铁、铜等。这些都是人体必须的微量元素,人体缺少它们,就会发生疾病,如缺铁就会引起贫血,因铁是血红蛋白和肌红蛋白的组织部分,参与氧化和输送二氧化碳,过去硫酸亚铁治疗贫血,人体虽能吸收,但刺激胃肠,会引起一系列不良反应,故改用葡萄糖酸亚铁后,胃肠无明显反应,补铁效果良好,鉴于这种情况,国家规定,用葡萄糖酸的钾、钠、钙、锌、铜、铁、锰等作为人体营养强化剂及药用补充剂,均有很好的治疗效果。长期的、科学合理的服用,对一个民族身体素质的提高是不言而喻的,据日本一资料统计,二战后日本青少年的平均身高增长了14.8cm,这与他们在食品、药品制造中科学合理的使用葡萄糖酸微量元素是密不可分的。在我国,大家熟知的葡萄糖酸钙的针剂、片剂和葡萄糖酸锌口服液都具有重要的生理功能、治疗功能,“巨能钙”、“补铁口服液”热销全国就是一个充分的验证。

  不良反应及其注意事项如下:

  (1)静注高渗葡萄糖注射液时应注意药液有无漏出血管外,以免引起静脉炎,在同一部位连续注射5%-10%浓度的药液时也可发生同一并发症。

  (2)治疗脑水肿使用高渗溶液时如突然停药,容易发生反跳现象并致使脑水肿再度发生,故不可突然停药,而应缓缓减量直至停用。

  (3)不宜做皮下注射,以免引起皮下坏死。

  (4)颅内或脊髓膜内出血以及脱水病人谵妄时,均禁止使用高渗葡萄糖注射液,以免发生意外。

  葡萄糖验证:验证醛基

  1.葡萄糖溶液与新制氢氧化铜浊液反应生成砖红色沉淀

  CH2OH(CHOH)4CHO+2Cu(OH)2---加热→CH2OH(CHOH)4COOH+Cu2O↓+2H2O

  2.葡萄糖溶液与银氨溶液反应有银镜反应

  CH2OH(CHOH)4CHO+2Ag(NH3)2OH(水浴加热)→CH2OH(CHOH)4COONH4+2Ag↓+3NH3+H2O

  CAS No.: 50-99-7

  葡萄糖分子中虽然含有醛基,但是d-葡萄糖中不含有醛基。

  葡萄糖

  glucose

  最常见的六碳单糖,又称右旋糖。以游离或结合的形式,广泛存在于生物界。葡萄、无花果等甜果及蜂蜜中,游离的葡萄糖含量较多。正常人血浆中葡萄糖含量为3.89~6.11mmol/L,尿中一般不含游离葡萄糖,糖尿病患者尿中的含量变化较大。血液或尿中游离葡萄糖含量的测定,是临床常规检验的一个项目。结合的葡萄糖主要存在于糖原、淀粉、纤维素、半纤维素等多糖中;一些寡糖如:麦芽糖、蔗糖、乳糖以及各种形式的糖苷中也含有葡萄糖。

  天然的葡萄糖,无论是游离的或是结合的,均属D构型,在水溶液中主要以吡喃式构形含氧环存在,为α和β两种构型的衡态混合物。

  在常温条件下,可以 β-D-葡萄糖的水合物(含1个水分子)形式从过饱和的水溶液中析出晶体,熔点为80℃;而在50~115℃之间析出的晶体则为无水 α-D-葡萄糖,熔点146℃115℃以上析出的稳定形式则为β-D-葡萄糖,熔点为148~150℃。呋喃环形式的葡萄糖仅以结合状态存在于少数天然化合物中。[α-D-葡萄糖 (吡喃]-D-葡萄糖 (吡喃" class=image>[型) []=+113,溶液中达平衡为+52.2 D-葡萄糖]]=+113,溶液中达平衡为+52.2 D-葡萄糖" class=image>[(直链式) β-D-葡萄糖(吡喃型)[β]=+19,溶液中]=+19,溶液中" class=image>[达平衡为+52.2]" class=image>

  D-葡萄糖具有一般醛糖的化学性质:在氧化剂作用下,生成葡萄糖酸,葡萄糖二酸或葡萄糖醛酸;在还原剂作用下,生成山梨醇;在弱碱作用下,葡萄糖可与另两种结构相近的六碳糖──果糖和甘露糖──三者之间通过烯醇式相互转化。葡萄糖还可与苯肼结合,生成葡萄糖脎,后者在结晶形状和熔点方面都与其他糖脎不同,可作为鉴定葡萄糖的手段。

  大多数生物具有酶系统可分解D-葡萄糖以取得能量的能力。在活细胞中,例如哺乳动物的肌肉细胞或单细胞的酵母细胞中,葡萄糖先后经过不需氧的糖酵解途径、需氧的三羧酸循环以及生物氧化过程生成二氧化碳和水,释放出较多的能量,以ATP(三磷酸腺苷)形式贮存起来,供生长、运动等生命活动之需。在无氧的情况下,葡萄糖仅仅被分解生成乳酸或乙醇,释放出的能量少得多;酿酒是无氧分解的过程。工业上,用酸或酶水解淀粉制得的葡萄糖可用做食品、制酒、制药等工业生产的原料。

 

 

多糖

  

多糖是由多个单糖分子缩合、失水而成,是一类分子机构复杂且庞大的糖类物质。其通式为(C6H12O6)x。多糖 polysaccharide 凡符合高分子化合物概念的碳水化合物及其衍生物均称为多糖。有由一种类型的单糖组成的葡萄糖、甘露聚糖、半乳聚糖等(通常在英语的单糖词干上加上an这个词尾),由二种以上的单糖组成的杂多糖(hetero polysaccharide),含有氨基糖的葡糖胺葡聚糖等,在化学结构上实属多种多样。就分子量而论,有从0.5万个分子组成的到超过106个的多糖。由糖苷键结合的糖链,至少要超过10个以上的单糖组成的聚合糖才称为多糖。比10个少的短链的称为寡糖。不过,就糖链而论即使是寡糖,在寡糖上结合了蛋白质和脂类的,就整个分子而论,如果是属于高分子,则从广义上来看也属于多糖,因此特称为复合多糖(conjugated polysaccharide,complex poly-saccharide)或复合糖质(glycoconjugate)(糖蛋白、糖脂类、蛋白多糖)。多糖的生物学功能,通常具有贮藏生物能〔如:淀粉、糖原、菊粉(inulin)〕和支持结构〔如:纤维素、几丁质(chitin)、粘多糖〕的作用。但是,细胞膜和细胞壁的多糖成份不仅是支持物质,而且还直接参与细胞的分裂过程,在许多情况下成为细胞和细胞,细胞和病毒,细胞和抗体等相互识别结构的活性部位。生物合成通常是由结合在细胞膜质(高尔基体、原生质膜、粗面内质网等)上的转糖基酶进行。利用各种糖苷作为前体。在细菌细胞壁和聚多糖的生物合成中,多萜醇衍生物(特别是称为细菌萜醇的)作为中间体参与反应,关于动、植物某些多糖的合成也有类似的中间体的报道。另一方面,在分解过程中,有对糖链的糖排列次序和键的性质有特异性的多种糖苷酶参与。动物细胞中则多以溶酶体系统的酶存在。此外,常能看到因缺损这些酶中的某种所导致的遗传病。这是显示多糖代谢重要性的典型例子。

   一、 均一性多糖

  自然界中最丰富的均一性多糖是淀粉和糖原、纤维素。它们都是由葡萄糖组成。淀粉和糖原分别是植物和动物中葡萄糖的贮存形式,纤维素是植物细胞主要的结构组分。

  1、淀粉

  植物营养物质的一种贮存形式,也是植物性食物中重要的营养成分。

  ① 直链淀粉

  许多α-葡萄糖以α(1-4)糖苷键依次相连成长而不分开的葡萄糖多聚物。典型情况下由数千个葡萄糖线基组成,分子量从150000到600000。

  结构:长而紧密的螺旋管形。这种紧实的结构是与其贮藏功能相适应的。遇碘显兰色

  ② 支链淀粉

-(1-6)支链。不能形成螺旋管,遇碘显紫色。a  在直链的基础上每隔20-25个葡萄糖残基就形成一个

  淀粉酶:内切淀粉酶(α-淀粉酶)水解α-1.4键,外切淀粉酶(β-淀粉酶)α-1.4,脱支酶α-1.6

  2、糖元

  与支链淀粉类似,只是分支程度更高,分支更,每隔4个葡萄糖残基便有一个分支。结构更紧密,更适应其贮藏功能,这是动物将其作为能量贮藏形式的一个重要原因,另一个原因是它含有大量的非原性端,可以被迅速动员水解。

  糖元遇碘显红褐色。

  3、纤维素

  结构:许多β-D-葡萄糖分子以β-(1-4)糖苷键相连而成直链[1]。纤维素是植物细胞壁的主要结构成份,占植物体总重量的1/3左右,也是自然界最丰富的有机物,地球上每年约生产1011吨纤维素,经济价值:木材、纸张、纤维、棉花、亚麻。

  完整的细胞壁是以纤维素为主,并粘连有半纤维素、果胶和木质素。约40条纤维素链相互间以氢键相连成纤维细丝,无数纤维细丝构成细胞壁完整的纤维骨架。

  降解纤维素的纤维素主要存在于微生物中,一些反刍动物可以利用其消化道内的微生物消化纤维素,产生的葡萄糖供自身和微生物共同利用。虽大多数的动物(包括人)不能消化纤维素,但是含有纤维素的食物对于健康是必需的和有益的。

  4、几丁质(壳多糖):

(1,4)糖苷链相连成的直链。b-D-葡萄糖胺以b  N-乙酰-

  5、菊 糖 inulin

  多聚果糖,存在于菊科植物根部。

  6、琼 脂 Ager

  多聚半乳糖,是某些海藻所含的多糖,人和微生物不能消化琼脂。

  几种均一多糖的结构、性质比较。

  二、 不均一性多糖

  不均一性多糖种类繁多。

  有一些不均一性多糖由含糖胺的重复双糖系列组成,称为糖胺聚糖(glyeosaminoglycans,GAGs),又称粘多糖。(mucopoly saceharides)、氨基多糖等。

  糖胺聚糖是蛋白聚糖的主要组分,按重复双糖单位的不同,糖胺聚糖有五类:

  1、透明质酸

  2、硫酸软骨素

  3、硫酸皮肤素

  4、硫酸用层酸

  5、肝素

  6、硫酸乙酰肝素

  化学性质

  多糖无甜味,在水中不能形成真溶液,只能形成胶体,无还原性,无变旋性,但有旋光性。

  分类

  均一多糖:由一种单糖分子缩合而成的多糖,叫做均一多糖。常见的有:淀粉、糖原、纤维素等。

  不均一多糖:有不同的单糖分子缩合而成的多糖,叫做不均一多糖。常见的有:透明质酸、硫酸软骨素等。

  生物学功能

  某些多糖,如纤维素和几丁质,可构成植物或动物骨架。淀粉和糖原等多糖可作为生物体储存能量的物质。不均一多糖通过共价键与蛋白质构成蛋白聚糖发挥生物学功能,如作为机体润滑剂、识别外来组织的细胞、血型物质的基本成分等。

  多糖类化合物广泛存在于动物细胞膜和植物、微生物的细胞壁中,是由醛基和酮基通过苷键连接的高分子聚合物,也是构成生命的四大基本物质之一。

  20世纪50年代发现真菌多糖具有抗癌作用,后来又发现地衣、花粉及许多植物均含有多糖类化合物,并进行分离提纯,确定了其化学结构、物理化学性质、药理作用,尤其对多糖类化合物的抗肿瘤和免疫增强作用进行深入研究。

 

 

几丁质

 

   几丁质是广泛存在于自然界的一种含氮多糖类生物性高分子,主要的来源为虾、蟹、昆虫等甲壳类动物的外壳与软件动物的器官(例如乌贼的软骨),以及真菌类的细胞壁等。其蕴藏量在地球上的天然高分子中占第二位,估计每年自然界生物的合成量可达11011吨,仅次于纤维素。

  一般由虾蟹壳提炼的几丁质,约含有 15% 的胺基(-NH2)与 85% 的乙醯基(-COCH3)。几丁质不溶于一般的弱无机酸或有机溶剂,且不溶于碱液中,只溶于强无机酸。几丁质具有强吸湿性,保湿效果亦相当好,并且具有吸附重金属离子的功能。

  什么是几丁质: 几丁质又名甲壳胺,一般指节肢动物的身体表面分泌的一种物质。结构为β-聚-N-乙酰葡糖胺。这种物质含碳水化合物和氨,性柔软,有弹性,与钙盐混杂则硬化,形成节肢动物的外骨骼。几丁质不溶于水、酒精、弱酸和弱碱等液体,有保护功能,但可溶于浓盐酸、硝酸、硫酸。在强碱作用下分解成脱乙酰几丁质和乙酸,脱乙酰几丁质进一步在浓盐酸的作用下则水解成葡糖胺和乙酸。另外,几丁质脱乙酰化的程度越高,发挥的生理效应也越强,脱乙酰几丁质脱乙酰度可以达到来90%以上。国际医学营养食品学会将一种物质命名为除糖、蛋白质、脂及、维生素和矿物质五大生命要素后的第六大生命要素,因此越来越受到广泛关注,它完全不同于一般天然营养品,它就是几丁质。

  优势:

    (1)唯一性:自然介唯一的带正电荷活性基团的纤维素。

  (2)人体必需的:人体健康和生存必需的第六元素,改善人体进入健康状态。

  (3)安全无毒副作用:100%的纯天然海洋生物制品。

  (4)营养加保健:有食物的营养,又具有辅助治疗的双重作用。

  (5)独特的双向调节:具双向免疫调节作用——免疫激活作用和免疫抑制作用。

  (6)易吸收利用:具生物适应性,易与机体亲和,被人体利用。

  (7)高纯度、高品质:现代高科技的奉献,指标国际领先,脱乙酰度高达90%以上。

  效能:

  (1)免疫机能活性化作用

  (2)防止癌细胞转移的作用

  (3)抑制癌症的作用

  (4)改善酸性体质效果

  (5)除菌作用

  (6)改善糖尿病作用

  (7)增加肠内有益菌作用

  (8)镇痛止血效果

  (9)抑制高血压的效果

  (10)强化肝机能作用

 

 

                  纤维素

 

    纤维素(cellulose)是由葡萄糖组成的大分子多糖。不溶于水及一般有机溶剂。是植物细胞壁的主要成分。纤维素是自然界中分布最广、含量最多的一种多糖,占植物界碳含量的50%以上。棉花的纤维素含量接近100%,为天然的最纯纤维素来源。一般木材中,纤维素占40~50%,还有10~30%的半纤维素和20~30%的木质素。此外,麻、麦秆、稻草、甘蔗渣等,都是纤维素的丰富来源。纤维素是重要的造纸原料。此外,以纤维素为原料的产品也广泛用于塑料、炸药、电工及科研器材等方面。食物中的纤维素(即膳食纤维)对人体的健康也有着重要的作用。

纤维素的性质

  纤维素大分子的基环是D-葡萄糖以β-1,4糖苷键组成的大分子多糖,分子量约50000~2500000,相当于300~15000个葡萄糖基脱水葡萄糖,其分子式为:(C6H10O5)n, 其化学组成含碳44.44%、氢6.17%、氧49.39%。由于来源的不同,纤维素分子中葡萄糖残基的数目,即聚合度(DP)在很宽的范围。分子式可写作(C6H10O5)n。是维管束植物[2]、地衣植物以及一部分藻类细胞壁的主要成分。醋酸菌(Acetobaeter)的荚膜,以及尾索类动物的被囊中也发现有纤维素的存在,棉的种子毛是高纯度(98%的纤维素。所谓α-纤维素(α-cellulose)这一名称系指从原来细胞壁的完全纤维素标准样品用17.5%NaOH不能提取的部分。β-纤维素(β-cellulose)、γ-纤维素(γ-cellulose)是相应于半纤维素的纤维素。虽然,α-纤维素通常大部分是结晶性纤维素,β-纤维素,γ-纤维素在化学上除含有纤维素以外,还含有各种多糖类。细胞壁的纤维素形成微纤维。宽度为10—30毫微米,长度有的达数微米。应用X线衍射和负染色法(negative染色法),根据电子显微镜观察,链状分子平行排列的结晶性部分组成宽为3—4毫微米的基本微纤维。推测这些基本微纤维集合起来就构成了微纤维。纤维素能溶于Schwitzer试剂或浓硫酸。虽然不易用酸水解,但是稀酸或纤维素酶可使纤维素生成D-葡萄糖、纤维二糖和寡糖。在醋酸菌中有从UDP葡萄糖引子(primer)转移糖苷合成纤维素的酶(cellulose synthase(UDPformingEC2.4.1.12)。在高等植物中已得到具有同样活性的颗粒性酶的标准样品。此酶通常是利用GDP葡萄糖(cellulose synthase(GDP forming) EC2.4.1.29),在由UDP葡萄糖转移的情况下,发生β-1,3键的混合。微纤维的形成场所和控制纤维素排列的机制还不太明瞭。另一方面就纤维素的分解而言,估计在初生细胞壁伸展生长时,微纤维的一部分由于纤维素酶的作用而被分解,成为可溶性。

  纤维素不溶于水和乙醇、乙醚等有机溶剂,能溶于铜氨Cu(NH3)4(OH)2溶液和铜乙二胺 [NH2CH2CH2NH2]Cu(OH)2溶液等。水可使纤维素发生有限溶胀,某些酸、碱和盐的水溶液可渗入纤维结晶区,产生无限溶胀,使纤维素溶解。纤维素加热到约150℃时不发生显著变化 ,超过这温度会由于脱水而逐渐焦化。纤维素与较浓的无机酸起水解作用生成葡萄糖等,与较浓的苛性碱溶液作用生成碱纤维素,与强氧化剂作用生成氧化纤维素。

纤维素的制法

  纤维素的实验室制法是先用水、有机溶剂处理植物原料,再用氯、亚氯酸盐、二氧化氯、过乙酸去除其中所含的木素,得到纤维素和半纤维素,然后采用各种方法除去半纤维素,制得纯纤维素。工业制法是用亚硫酸盐溶液或碱溶液蒸煮植物原料,除去木素,然后经过漂白进一步除去残留木素,所得漂白浆可用于造纸。

纤维素的作用和衍生物

  全世界用于纺织造纸的纤维素,每年达800万吨。此外,用分离纯化的纤维素做原料,可以制造人造丝,赛璐玢以及硝酸酯、醋酸酯等酯类衍生物;也可制成甲基纤维素、乙基纤维素、羧甲基纤维素、聚阴离子纤维素[1]等醚类衍生物,用于石油钻井、食品、陶瓷釉料、日化、合成洗涤、石墨制品、铅笔制造、电子、涂料、建筑建材、装饰、蚊香、烟草、造纸、橡胶、农业、胶粘剂、塑料、炸药、电工及科研器材等方面。

  膳食纤维

  人类膳食中的纤维素主要含于蔬菜和粗加工的谷类中,虽然不能被消化吸收,但有促进肠道蠕动,利于粪便排出等功能。草食动物则依赖其消化道中的共生微生物将纤维素分解,从而得以吸收利用。食物纤维素包括粗纤维、半粗纤维和木质素。食物纤维素是一种不被消化吸收的物质,过去认为是“废物”,现在认为它在保障人类健康,延长生命方面有着重要作用。因此,称它为第七种营养素。

  ①有助于肠内大肠杆菌合成多种维生素。

  ②纤维素比重小,体积大,在胃肠中占据空间较大,使人有饱食感,有利于减肥。

  ③纤维素体积大,进食后可刺激胃肠道,使消化液分泌增多和胃肠道蠕动增强,可防治糖尿病的便秘。

  ④高纤维饮食可通过胃排空延缓、肠转运时间改变、可溶性纤维在肠内形成凝胶等作用而使糖的吸收减慢。亦可通过减少肠激素如抑胃肽或胰升糖素分泌,减少对胰岛B细胞的刺激,减少胰岛素释放与增高周围胰岛素受体敏感性,使葡萄糖代谢加强。

  ⑤近年研究证明高纤维饮食使Ⅰ型糖尿病患者单核细胞上胰岛素受体结合增加,从而节省胰岛素的需要量。由此可见,糖尿病患者进食高纤维素饮食,不仅可改善高血糖,减少胰岛素和口服降糖药物的应用剂量,并且有利于减肥,还可防治便秘、痔疮等疾病。

  纤维素的主要生理作用是吸附大量水分,增加粪便量,促进肠蠕动,加快粪便的排泄,使致癌物质在肠道内的停留时间缩短,对肠道的不良刺激减少,从而可以预防肠癌发生。

纤维素的摄入与鉴别

  蔬菜中含有丰富的纤维素。不含纤维素食物有:鸡、鸭、鱼、肉、蛋等;含大量纤维素的食物有:粗粮、麸子、蔬菜、豆类等,其中棉花含量最高,达到98%。因此建议糖尿病患者适当多食用豆类和新鲜蔬菜等富含纤维素的食物。目前国内的植物纤维食品,多是用米糠、麸皮、麦糟、甜菜屑、南瓜、玉米皮及海藻类植物等制成的,对降低血糖、血脂有一定作用。

  纤维素燃烧无味,生成黑烟,用此法可鉴别人造丝和真丝(蛋白质,燃烧有烧焦羽毛气味)。

各种食物的纤维素含量

  纤维素虽然不能被人体吸收,但具有良好的清理肠道的作用,因此成为营养学家推荐的六大营养素之一,是适合IBS患者食用的健康食品。常见食品的纤维素含量如下:

  麦麸:31%

  谷物:4-10%,从多到少排列为小麦粒、大麦、玉米、荞麦面、薏米面、高粱米、黑米。

  麦片:8-9%;燕麦片:5-6%

  马铃薯、白薯等薯类的纤维素含量大约为3%。

  豆类: 6-15%,从多到少排列为黄豆、青豆、蚕豆、芸豆、豌豆、黑豆、红小豆、绿豆

  无论谷类、薯类还是豆类,一般来说,加工得越精细,纤维素含量越少。

  蔬菜类:笋类的含量最高,笋干的纤维素含量达到30-40%,辣椒超过40%。其余含纤维素较多的有:蕨菜、菜花、菠菜、南瓜、白菜、油菜

  菌类(干):纤维素含量最高,其中松蘑的纤维素含量接近50%,30%以上的按照从多到少的排列为:发菜、香菇、银耳、木耳。此外,紫菜的纤维素含量也较高,达到20%

  坚果:3-14%。10%以上的有:黑芝麻、松子、杏仁;10%以下的有白芝麻、核桃、榛子、胡桃、葵瓜子、西瓜子、花生仁

  水果:含量最多的是红果干,纤维素含量接近50%,其次有桑椹干、樱桃、酸枣、黑枣、大枣、小枣、石榴、苹果、鸭梨。

  各种肉类、蛋类、奶制品、各种油、海鲜、酒精饮料、软饮料都不含纤维素;各种婴幼儿食品的纤维素含量都极低

  纤维素与身体健康

  并非所有的碳水化合物都可以被消化并转化为葡萄糖。难以消化的碳水化合物被称为纤维。它是健康饮食不可或缺的一个组成部分,水果、蔬菜、小扁豆、蚕豆以及粗粮中的含量较高。食用高纤维的食物可以降低患肠癌、糖尿病和憩室疾病的可能性。而且也不易出现便秘现象。

  通常人们认为纤维就是“粗草料”,但是事实并非如此,纤维可以吸收水分。因此它可以使食物残渣膨胀变松,更容易通过消化道。由于食物残渣在体内停留的时间缩短了,因此感染的风险被降低;而且,当一些食物特别是肉类变质时,会产生致癌物质并引起细胞变异,食物残渣在体内停留时间的减短同样可以降低出现这种情况的可能性。经常食肉者的饮食中纤维的含量很低,这会将食物在肠道中停留的时间增加到24-72小时,在这段时间内,有一些食物可能出现变质。因此如果你喜欢吃肉,那么你必须确保饮食中同时含有大量纤维。

  纤维有很多种类,其中一些是蛋白质而不是碳水化合物。有些种类的纤维,如燕麦中含有的那一类被称为“可溶性纤维”,它们与糖类分子结合在一起可以减缓碳水化合物的吸收速度。这样它们就可以帮助保持血糖浓度的稳定。有一些纤维的吸水性比其他种类的纤维要强很多。小麦纤维在水中可以膨胀到原来体积的10倍,而日本魔芋中的葡甘露聚糖纤维在水中可以膨胀到原来体积的100倍。由于纤维可以使食物膨胀,减缓糖类中能量的释放速度,因此高吸水性纤维可以帮助控制食欲,有助于保持适当的体重。

  纤维理想的摄入量是每天不少于35克。如果食物选择得恰当,很容易就可以达到这个标准而不需要进行额外的补充。萨里大学的营养学家约翰·迪克森(JOhn Dickerson)曾强调指出,在营养本不丰富的饮食中加入麦茨会对健康造成危害。其原因是麦鼓中含有大量的肌醇六磷酸,这是一种抗营养物质,它会降低身体对包括锌在内的各种矿物质的吸收。总之,最好还是从大量不同的食物来源中获得纤维,这些食物来源包括燕麦、小扁豆、蚕豆、植物种子、水果以及生食或轻微烹制的蔬菜。蔬菜中大部分的纤维在烹制过程中都被破坏了,因此蔬菜最好还是生食。

  纤维素在工业中的应用

  适用于干粉砂浆建材,内外墙耐水腻子粉(膏),粘结剂,填缝剂,界面剂,水性涂料,自流平剂等新型建材。

激素  

    激素(Hormone)音译为荷尔蒙。希腊文原意为“奋起活动”,它对肌体的代谢、生长、发育、繁殖、性别、性欲和性活动等起重要的调节作用。

  就是高度分化的内分泌细胞合成并直接分泌入血的化学信息物质,它通过调节各种组织细胞的代谢活动来影响人体的生理活动。由内分泌腺或内分泌细胞分泌的高效生物活性物质,在体内作为信使传递信息,对机体生理过程起调节作用的物质称为激素。它是我们生命中的重要物质。

  现在把凡是通过血液循环或组织液起传递信息作用的化学物质,都称为激素。激素的分泌均极微量,为毫微克(十亿分之一克)水平,但其调节作用均极明显。激素作用甚广,但不参加具体的代谢过程,只对特定的代谢和生理过程起调节作用,调节代谢及生理过程的进行速度和方向,从而使机体的活动更适应于内外环境的变化。激素的作用机制是通过与细胞膜上或细胞质中的专一性受体蛋白结合而将信息传入细胞,引起细胞内发生一系列相应的连锁变化,最后表达出激素的生理效应。激素的生理作用主要是:通过调节蛋白质、糖和脂肪等物质的代谢与水盐代谢,维持代谢的平衡,为生理活动提供能量;促进细胞的分裂与分化,确保各组织、器官的正常生长、发育及成熟,并影响衰老过程;影响神经系统的发育及其活动;促进生殖器官的发育与成熟,调节生殖过程;与神经系统密切配合,使机体能更好地适应环境变化。研究激素不仅可了解某些激素对动物和人体的生长、发育、生殖的影响及致病的机理,还可利用测定激素来诊断疾病。许多激素制剂及其人工合成的产物已广泛应用于临床治疗及农业生产。利用遗传工程的方法使细菌生产某些激素,如生长激素、胰岛素等已经成为现实,并已广泛应用于临床上。

  广义是指引起液体相互关联的物质,但狭义即现在一般是把动物体内的固定部位(一般在内分泌腺内)产生的而不经导管直接分泌到体液中,并输送到体内各处使某些特定组织活动发生一定变化的化学物质,总称激素。W.M.Bayliss和E.H.St- arling(1902年)根据他们发现的物质肠促胰液肽(secretin),而对具有这种作用的物质首先赋予了“激素”的这一名称和定义。即使极微量的激素也表现出其应有的作用,但它并不构成代谢底物,而是起调节物质的作用。其作用机制,在甾类激素,经过激素和细胞质内受体的复合体与染色质结合,引起转录的活化,开始合成新的mRNA,进而合成酶蛋白、结构蛋白或调节蛋白。结果认为在细胞中出现了激素的这种作用。在肽类激素,认为与细胞膜直接反应,在细胞内通过cAMP发挥激素作用。如把脊椎动物的激素进行化学的分类,则可分成蛋白质、多肽系统(胰岛素、胰高血糖素、脑下垂体的各种激素、甲状旁腺激素),酚衍生物系统(肾上腺素、甲状腺激素),甾类化合物系统(生殖腺激素,肾上腺皮质激素)。昆虫前胸腺激素的蜕皮素属甾类化合物系统,而咽侧体的保幼激素是链状碳氢化合物。此外,从海星的放射神经中抽出的海星生殖巢刺激物质是核苷酸。不论来源是细胞、组织或腺体,凡具有特殊生理作用的内分泌物,全部都称为(广义的)激素,不论是由细胞分泌的植物激素,或由不固定的非腺性组织分泌的创伤激素,在一切组织中普遍产生的副激素,个体分泌到体外可在个体之间发挥作用的信息素等,都可以归入激素和其他范畴。另一方面,特定的神经细胞形成和分泌的神经性脑下垂体激素等神经分泌物质,则可归入狭义的激素中,而乙酰胆碱、去甲肾上腺素等化学传递物质通常不归入狭义的激素中。最近由于控制论的应用等,把激素作为个体内细胞间的信息传递物质的想法也增强了。

产生

  激素是内分泌细胞制造的。

  人体内分泌细胞有群居和散住两种。

  群居的形成了内分泌腺,如脑壳里的脑垂体,脖子前面的甲状腺、甲状旁腺,肚子里的肾上腺、胰岛、卵巢及阴囊里的睾丸。   散住的如胃肠粘膜中有胃肠激素细胞,丘脑下部分泌肽类激素细胞等。

  每一个内分泌细胞都是制造激素的小作坊。

  大量内分泌细胞制造的激素集中起来,便成为不可小看的力量。

  种类激素是化学物质。 目前对各种激素的化学结构基本都搞清楚了。 按化学结构大体分为四类。 第一类为类固醇,如肾上腺皮质激素、性激素。 第二类为氨基酸衍生物,有甲状腺素、肾上腺髓质激素、松果体激素等。第三类激素的结构为肽与蛋白质,如下丘脑激素、垂体激素、胃肠激素、降钙素等。 第四类为脂肪酸衍生物,如前列腺素。 作用 激素是调节机体正常活动的重要物质。它们中的任何一种都不能在体内发动一个新的代谢过程。它们也不直接参与物质或能量的转换,只是直接或间接地促进或减慢体内原有的代谢过程。如生长和发育都是人体原有的代谢过程,生长激素或其他相关激素增加,可加快这一进程,减少则使生长发育迟缓。激素对人类的繁殖、生长、发育、各种其他生理功能、行为变化以及适应内外环境等,都能发挥重要的调节作用。一旦激素分泌失衡,便会带来疾病。激素只对一定的组织或细胞(称为靶组织或靶细胞)发挥特有的作用。人体的每一种组织、细胞,都可成为这种或那种激素的靶组织或靶细胞。而每一种激素,又可以选择一种或几种组织、细胞作为本激素的靶组织或靶细胞。如生长激素可以在骨骼、肌肉、结缔组织和内脏上发挥特有作用,使人体长得高大粗壮。但肌肉也充当了雄激素、甲状腺素的靶组织。激素的生理作用虽然非常复杂,但是可以归纳为五个方面:第一,通过调节蛋白质、糖和脂肪等三大营养物质和水、盐等代谢,为生命活动供给能量,维持代谢的动态平衡。第二,促进细胞的增殖与分化,影响细胞的衰老,确保各组织、各器官的正常生长、发育,以及细胞的更新与衰老。例如生长激素、甲状腺激素、性激素等都是促进生长发育的激素。第三,促进生殖器官的发育成熟、生殖功能,以及性激素的分泌和调节,包括生卵、排卵、生精、受精、着床、妊娠及泌乳等一系列生殖过程。第四,影响中枢神经系统和植物性神经系统的发育及其活动,与学习、记忆及行为的关系。第五,与神经系统密切配合调节机体对环境的适应。上述五方面的作用很难截然分开,而且不论哪一种作用,激素只是起着信使作用,传递某些生理过程的信息,对生理过程起着加速或减慢的作用,不能引起任何新的生理活动。

作用的特点

  1.高度专一性包括组织专一性和效应专一性。前者指激素作用于特定的靶细胞、靶组织、靶器官。后者指激素有选择地调节某一代谢过程的特定环节。例如,胰高血糖素、肾上腺素、糖皮质激素都有升高血糖的作用,但胰高血糖素主要作用于肝细胞,通过促进肝糖原分解和加强糖异生作用,直接向血液输送葡萄糖;肾上腺素主要作用于骨骼肌细胞,促进肌糖原分解,间接补充血糖;糖皮质激素则主要通过刺激骨骼肌细胞,使蛋白质和氨基酸分解,以及促进肝细胞糖异生作用来补充血糖。激素的作用是从激素与受体结合开始的。靶细胞介导激素调节效应的专一性激素结合蛋白,称为激素受体。受体一般是糖蛋白,有些分布在靶细胞质膜表面,称为细胞表面受体;有些分布在细胞内部,称为细胞内受体,如甲状腺素受体。

  2.极高的效率激素与受体有很高的亲和力,因而激素可在极低浓度水平与受体结合,引起调节效应。激素在血液中的浓度很低,一般蛋白质激素的浓度为10-10-10-12mol/L,其他激素在10-6-10-9mol/L。而且激素是通过调节酶量与酶活发挥作用的,可以放大调节信号。激素效应的强度与激素和受体的复合物数量有关,所以保持适当的激素水平和受体数量是维持机体正常功能的必要条件。例如,胰岛素分泌不足或胰岛素受体缺乏,都可引起糖尿病。

  3.多层次调控内分泌的调控是多层次的。下丘脑是内分泌系统的最高中枢,它通过分泌神经激素,即各种释放因子(RF)或释放抑制因子(RIF)来支配垂体的激素分泌,垂体又通过释放促激素控制甲状腺、肾上腺皮质、性腺、胰岛等的激素分泌。相关层次间是施控与受控的关系,但受控者也可以通过反馈机制反作用于施控者。如下丘脑分泌促甲状腺素释放因子(TRF),刺激垂体前叶分泌促甲状腺素(TSH),使甲状腺分泌甲状腺素。当血液中甲状腺素浓度升高到一定水平时,甲状腺素也可反馈抑制TRF和TSH的分泌。激素的作用不是孤立的。内分泌系统不仅有上下级之间控制与反馈的关系,在同一层次间往往是多种激素相互关联地发挥调节作用。激素之间的相互作用,有协同,也有拮抗。例如,在血糖调节中,胰高血糖素等使血糖升高,而胰岛素则使血糖下降。他们之间相互作用,使血糖稳定在正常水平。对某一生理过程实施正反调控的两类激素,保持着某种平衡,一旦被打破,将导致内分泌疾病。激素的合成与分泌是由神经系统统一调控的。

研究

  1853年,法国的巴纳德研究了各种动物的胃液后,发现了肝脏具有多种不可思议的功能。贝尔纳认为含有一种物质来完成这种功能。可是他没有研究出这种物质,实际上那就是激素。

  1880年,德国的奥斯特瓦尔德从甲状腺中提出大量含有碘的物质,并确认这就是调节甲状腺功能的物质。后来才知道这也是一种激素。

  1889年,巴纳德的学生西夸德发现了另一种激素的功能。他认为动物的睾丸中一定含有活跃身体功能的物质,但一直未能找到。

  1901年,在美国从事研究工作的日本人高峰让吉从牛的副肾中提取出调节血压的物质,并做成晶体,起名为肾上腺素,这是世界上提取出的第一激素晶体。

  1902年,英国生理学家斯塔林和贝利斯经过长期的观察研究,发现当食物进入小肠时,由于食物在肠壁摩擦,小肠粘膜就会分泌出一种数量极少的物质进入血液,流送到胰腺,胰腺接到后就立刻分泌出胰液来。他们将这种物质提取出来,注入哺乳动物的血液中,发现即使动物不吃东西,也会立刻分泌出胰液来,于是他们给这种物质起名为“促胰液”。

  后来斯塔林和贝利斯给上述这类数量极少但有生理作用,可激起生物体内器官反应的物质起名为“激素”(荷尔蒙)。

  自从出现激素一词后,新的激素又不断地被发现,人们对激素的认识还在不断地加深、扩大。

激素传递的方式

  主要有:

  ①远距分泌,激素释放后直接进入毛细血管,经血液循环运送到远距离的靶器官;

  ②旁分泌,激素释放后进入细胞外液,通过扩散到达邻近的靶细胞;

  ③神经分泌,神经细胞合成的激素沿轴浆流动运送到所连接的组织,或从神经末梢释放入毛细血管,由血液运送至靶细胞;

  ④自分泌,激素被分泌入细胞外液后,又作用于分泌细胞自身。

激素的代谢

  激素的合成、贮存、释放、运输以及在体内的代谢过程,有许多类似的地方,但这部分内容大多数属于生物化学范畴,本章仅就和生理学密切有关的方面简述如下。

  (一)合成和贮存

  不同结构的激素,其合成途径也不同。肽类激素一般是在分泌细胞内核糖体上通过翻译过程合成的,与蛋白质合成过程基本相似,合成后储存在胞内高尔基体的小颗粒内,在适宜的条件下释放出来。胺类激素与类固醇类激素是在分泌细胞内主要通过一系列特有的酶促反应而合成的。前一类底物是氨基酸,后一类是胆固醇。如果内分泌细胞本身的功能下降或缺少某种特有的酶,都会减少激素合成,称为某种内分泌腺功能低下;内分泌细胞功能过分活跃,激素合成增加,分泌也增加,称为某内分泌腺功能亢进。两者都属于非生理状态。

  各种内分泌腺或细胞贮存激素的量可有不同,除甲状腺贮存激素量较大外,其他内分泌腺的激素贮存量都较少,合成后即释放入血液(分泌),所以在适宜的刺激下,一般依靠加速合成以供需要。

  (二)激素的分泌及其调节

  激素的分泌有一定的规律,既受机体内部的调节,又受外界环境信息的影响。激素分泌量的多少,对机体的功能有着重要的影响。

  1.激素分泌的周期性和阶段性由于机体对地球物理环境周期性变化以及对社会生活环境长期适应的结果,使激素的分泌产生了明显的时间节律,血中激素浓度也就呈现了以日、月、或年为周期的波动。这种周期性波动与其它刺激引起的波动毫无关系,可能受中枢神经的“生物钟”控制。

  2.激素在血液中的形式及浓度 激素分泌入血液后,部分以游离形式随血液运转,另一部分则与蛋白质结合,是一种可逆性过程。即游离型+结合蛋白 结合型,但只有游离型才具有生物活性。不同的激素结合不同的蛋白,结合比例也不同。结合型激素在肝脏代谢与由肾脏排出的过程比游离型长,这样可以延长激素的作用时间。因此,可以把结合型看作是激素在血中的临时储蓄库。激素在血液中的浓度也是内分泌腺功能活动态的一种指标,它保持着相对稳定。如果激素在血液中的浓度过高,往往表示分泌此激素的内分泌腺或组织功能亢进;过低,则表示功能低下或不足。

  3.激素分泌的调节 已如前述激素分泌的适量是维持机体正常功能的一个重要因素,故机体在接受信息后,相应的内分泌腺是否能及时分泌或停止分泌。这就要机体的调节,使激素的分泌能保证机体的需要;又不至过多而对机体有损害。引起各种激素分泌的刺激可以多种多样,涉及的方面也很多,有相似的方面,也有不同的方面,但是在调节的机制方面有许多共同的特点,简述如下。

  当一个信息引起某一激素开始分泌时,往往调整或停止其分泌的信息也反馈回来。即分泌激素的内分泌细胞随时收到靶细胞及血中该激素浓度的信息,或使其分泌减少(负反馈),或使其分泌再增加(正反馈),常常以负反馈效应为常见。最简单的反馈回路存在于内分泌腺与体液成分之间,如血中葡萄糖浓度增加可以促进胰岛素分泌,使血糖浓度下降;血糖浓度下降后,则对胰岛分泌胰岛素的作用减弱,胰岛素分泌减少,这样就保证了血中葡萄糖浓度的相对稳定。又如下丘脑分泌的调节肽可促进腺垂体分泌促激素,而促激素又促进相应的靶腺分泌激素以供机体的需要。当这种激素在血中达到一定浓度后,能反馈性的抑制腺垂体、或下丘脑的分泌,这样就构成了下丘脑——腺垂体——靶腺功能轴,形成一个闭合回路,这种调节称闭环调节,按照调节距离的长短,又可分长反馈、短反馈和超短反馈。要指出的是,在某些情况下,后一级内分泌细胞分泌的激素也可促进前一级腺体的分泌,呈正反馈效应,但较为少见。

  在闭合回路的基础上,中枢神经系统可接受外环境中的各种应激性及光、温度等刺激,再通过下丘脑把内分泌系统与外环境联系起来形成开口环路,促进各级内分泌腺分泌,使机体能更好地适应于外环境。此时闭合环路暂时失效。这种调节称为开环调节。

  (三)激素的代谢

  激素从分泌入血,经过代谢到消失(或消失生物活性)所经历的时间长短不同。为表示激素的更新速度,一般采用激素活性在血中消失一半的时间,称为半衰期,作为衡量指标。有的激素半衰期仅几秒;有的则可长达几天。半衰期必须与作用速度及作用持续时间相区别。激素作用的速度取决于它作用的方式;作用持续时间则取决于激素的分泌是否继续。激素的消失方式可以是被血液稀释、由组织摄取、代谢灭活后经肝与肾,随尿、粪排出体外。

激素的作用机制

  激素在血中的浓度极低,这样微小的数量能够产生非常重要的生理作用,其先决条件是激素能被靶细胞的相关受体识别与结合,再产生一系列过程。含氮类激素与类固醇的作用机制不同,现简述如下:

  (一)含氮类激素

  它作为第一信使,与靶细胞膜上相应的专一受体结合,这一结合随即激活细胞膜上的腺苷酸环化酶系统,在Mg2+存在的条件下,ATP转变为cAMP。cAMP为第二信使。信息由第一信使传递给第二信使。cAMP使胞内无活性的蛋白激酶转为有活性,从而激活磷酸化酶,引起靶细胞固有的、内在的反应:如腺细胞分泌、肌肉细胞收缩与舒张、神经细胞出现电位变化、细胞通透性改变、细胞分裂与分化以及各种酶反应等等。自cAMP第二信使学说提出后,人们发现有的多肽激素并不使cAMP增加,而是降低cAMP合成。新近的研究表明,在细胞膜还有另一种叫做GTP结合蛋白,简称G蛋白,而G蛋白又可分为若干种。G蛋白有α、β、γ三个亚单位。当激素与受体接触时,活化的受体便与G蛋白的α亚单位结合而与β、γ分离,对腺苷酸环化酶起激活或抑制作用。起激活作用的叫兴奋性G蛋白(Gs);起抑制作用的叫抑制性G蛋白(Gi)。G蛋白与腺苷酸环化酶作用后, G蛋白中的GTP酶使GTP水解为GDP而失去活性,G蛋白的β、γ亚单位从新与α亚单位结合,进入另一次循环。腺苷酸环化酶被Gs激活时cAMP增加;当它被Gi抑制时,cAMP减少。要指出的是cAMP与生物效应的关系不经常一致,故关于cAMP是否是唯一的第二信使尚有不同的看法,有待进一步研究。近年来关于细胞内磷酸肌醇可能是第二信使的学说受到重视。这个学说的中心内容是:在激素的作用下,在磷脂酶C的催化下使细胞膜的磷脂酰肌醇→三磷肌醇+甘油二酯。二者通过各自的机制使细胞内Ca2+浓度升高,增加的Ca2+与钙调蛋白结合,激发细胞生物反应的作用。

  (二)类固醇激素

  这类激素是分子量较小的脂溶性物质,可以透过细胞膜进入细胞内,在细胞内与胞浆受体结合,形成激素胞浆受体复合物,复合物通过变构就能透过核膜,再与核内受体相互结合,转变为激素-核受体复合物,促进或抑制特异的RNA合成,再诱导或减少新蛋白质的合成。

  激素还有其他作用方式。此外,还有一些激素对靶细胞无明显的效应,但可能使其它激素的效应大为增强,这种作用被称为“允许作用”。例如肾上腺皮质激素对血管平滑肌无明显的作用,却能增强去甲肾上腺素的升血压作用。

  含激素的外用药膏

  皮炎平、皮康霜、恩肤霜、复方酮康唑霜、复方酮纳乐霜、去炎松软膏、乐肤液、皮康王、艾洛松、优卓尔、适确得、复方适确得、特美肤、索康、喜乐等。

  含激素的滴眼液

  地塞米松磷酸钠,可的松,强的松,的确当,百力特,点必舒,艾氟龙(氟美瞳)

  激素类药物强弱表

  弱效:氢化可的松,醋酸氢化可的松,地塞米松,醋酸地塞米松。中效:曲安西龙,丁酸氢化可的松。强效:双丙酸倍氯米松,哈西奈德,糠酸莫米松,氟轻松。最强效:丙酸氯倍他索,丙酸倍他米松,卤美他松,倍氯美松,双醋氟美松。

激素是患者的天使还是魔鬼?

  激素的使用

  [1][2]激素可以减少患者的病痛,在短时间内可以缓解病情,但有可能使患者上瘾,对激素产生依赖性,所以有很多人称激素为魔鬼。但是激素可以在病痛初发期发生有效的作用。鉴于此种情形,患者应该仔细权衡用或不用。

 

 

 

胰岛素

 

【胰岛素的结构】

  不同种族动物(人、牛、羊、猪等)的胰岛素功能大体相同,成分稍有差异。图中为人胰岛素化学结构。

  胰岛素由A、B两个肽链组成。人胰岛素(Insulin Human)A链有11种21个氨基酸,B链有15种30个氨基酸,共26种51个氨基酸组成。其中A7(Cys)-B7(Cys)、A20(Cys)-B19(Cys)四个半胱氨酸中的巯基形成两个二硫键,使A、B两链连接起来。此外A链中A6(Cys)与A11(Cys)之间也存在一个二硫键。

【胰岛素的性质】

  〖化学本质〗蛋白质

  〖分子式〗C257 H383 N65 O77 S6

  〖分子量〗5807.69

  〖性状〗白色或类白色的结晶粉末

  〖熔点〗233℃(分解)

  〖比旋度〗-64°±8°(C=2,0.003mol/L NaOH)

  〖溶解性〗在水、乙醇、氯仿或乙醚中几乎不溶;在矿酸(无机酸)或氢氧化碱溶液中易溶

  〖酸碱性〗两性,等电点pI5.35-5.45

   胰岛素的英文缩写,INS.

【胰岛素的来源】

  胰岛素是一种蛋白质类激素,体内胰岛素是由胰岛β细胞分泌的。在人体十二指肠旁边,有一条长形的器官,叫做胰腺。在胰腺中散布着许许多多的细胞群,叫做胰岛。胰岛素是由胰岛β细胞受内源性或外源性物质如葡萄糖、乳糖、核糖、精氨酸、胰高血糖素等的刺激而分泌的一种蛋白质激素。

  胰岛素合成的控制基因在第11对染色体短臂上。基因正常则生成的胰岛素结构是正常的;若基因突变则生成的胰岛素结构是不正常的,为变异胰岛素。在β细胞的细胞核中,第11对染色体短臂上胰岛素基因区DNA向mRNA转录,mRNA从细胞核移向细胞浆的内质网,转译成由105个氨基酸残基构成的前胰岛素原。前胰岛素原经过蛋白水解作用除其前肽,生成86个氨基酸组成的长肽链——胰岛素原(Proinsulin)。胰岛素原随细胞浆中的微泡进入高尔基体,经蛋白水解酶的作用,切去31、32、60三个精氨酸连接的链,断链生成没有作用的C肽,同时生成胰岛素,分泌到B细胞外,进入血液循环中。未经过蛋白酶水解的胰岛素原,一小部分随着胰岛素进入血液循环,胰岛素原的生物活性仅有胰岛素的5%。

  胰岛素半衰期为5-15分钟。在肝脏,先将胰岛素分子中的二硫键还原,产生游离的AB链,再在胰岛素酶作用下水解成为氨基酸而灭活。

  胰岛β细胞中储备胰岛素约200U,每天分泌约40U。空腹时,血浆胰岛素浓度是5~15μU/mL。进餐后血浆胰岛素水平可增加5~10倍。体内胰岛素的生物合成速度主要受以下因素影响:

  (一)血浆葡萄糖浓度是影响胰岛素分泌的最重要因素。口服或静脉注射葡萄糖后,胰岛素释放呈两相反应。早期快速相,门静脉血浆中胰岛素在2分钟内即达到最高值,随即迅速下降;延迟缓慢相,10分钟后血浆胰岛素水平又逐渐上升,一直延续1小时以上。早期快速相显示葡萄糖促使储存的胰岛素释放,延迟缓慢相显示胰岛素的合成和胰岛素原转变的胰岛素。

  (二)进食含蛋白质较多的食物后,血液中氨基酸浓度升高,胰岛素分泌也增加。精氨酸、赖氨酸、亮氨酸和苯丙氨酸均有较强的刺激胰岛素分泌的作用。

  (三)进餐后胃肠道激素增加,可促进胰岛素分泌如胃泌素、胰泌素、胃抑肽、肠血管活性肽都刺激胰岛素分泌。

  (四)自由神经功能状态可影响胰岛素分泌。迷走神经兴奋时促进胰岛素分泌;交感神经兴奋时则抑制胰岛素分泌。

  胰岛素是与C肽以相等分子分泌进入血液的。临床上使用胰岛素治疗的病人,血清中存在胰岛素抗体,影响放射免疫方法测定血胰岛素水平,在这种情况下可通过测定血浆C肽水平,来了解内源性胰岛素分泌状态。

【胰岛素有几个品种】

  (一)按来源不同分类

  1、动物胰岛素:从猪和牛的胰腺中提取,两者药效相同,但与人胰岛素相比,猪胰岛素中有1个氨基酸不同,牛胰岛素中有3个氨基酸不同,因而易产生抗体。

  2、半合成人胰岛素:将猪胰岛素第30位丙氨酸,置换成与人胰岛素相同的苏氨酸,即为半合成人胰岛素。3、生物合成人胰岛素:利用生物工程技术,获得的高纯度的生物合成人胰岛素,其氨基酸排列顺序及生物活性与人体本身的胰岛素完全相同。

  (二)按药效时间长短分类

  1、超短效:注射后15分钟起作用,高峰浓度1~2小时。

  2、短效(速效):注射后30分钟起作用,高峰浓度2~4小时,持续5~8小时。

  3、中效(低鱼精蛋白锌胰岛素):注射后2~4小时起效,高峰浓度6~12小时,持续24~28小时。

  4、长效(鱼精蛋白锌胰岛素):注射后4~6小时起效,高峰浓度4~20小时,持续24~36小时。

  5、预混:即将短效与中效预先混合,可一次注射,且起效快(30分钟),持续时间长达16~20小时。市场有30%短效和70%中效预混,和短、中效各占50%的预混两种。

【胰岛素的作用】

  〖药理作用〗

  治疗糖尿病、消耗性疾病。

  〖生理作用〗

  胰岛素是机体内唯一降低血糖的激素,也是唯一同时促进糖原、脂肪、蛋白质合成的激素。作用机理属于受体酪氨酸激酶机制。

  (一)调节糖代谢

  胰岛素能促进全身组织对葡萄糖的摄取和利用,并抑制糖原的分解和糖原异生,因此,胰岛素有降低血糖的作用。胰岛素分泌过多时,血糖下降迅速,脑组织受影响最大,可出现惊厥、昏迷,甚至引起胰岛素休克。相反,胰岛素分泌不足或胰岛素受体缺乏常导致血糖升高;若超过肾糖阈,则糖从尿中排出,引起糖尿;同时由于血液成份中改变(含有过量的葡萄糖), 亦导致高血压、冠心病和视网膜血管病等病变。胰岛素降血糖是多方面作用的结果:

  (1)促进肌肉、脂肪组织等处的靶细胞细胞膜载体将血液中的葡萄糖转运入细胞。

  (2)通过共价修饰增强磷酸二酯酶活性、降低cAMP水平、升高cGMP浓度,从而使糖原合成酶活性增加、磷酸化酶活性降低,加速糖原合成、抑制糖原分解。

  (3)通过激活丙酮酸脱氢酶磷酸酶而使丙酮酸脱氢酶激活,加速丙酮酸氧化为乙酰辅酶A,加快糖的有氧氧化。

  (4)通过抑制PEP羧激酶的合成以及减少糖异生的原料,抑制糖异生。

  (5)抑制脂肪组织内的激素敏感性脂肪酶,减缓脂肪动员,使组织利用葡萄糖增加。

  (二)调节脂肪代谢

  胰岛素能促进脂肪的合成与贮存,使血中游离脂肪酸减少,同时抑制脂肪的分解氧化。胰岛素缺乏可造成脂肪代谢紊乱,脂肪贮存减少,分解加强,血脂升高,久之可引起动脉硬化,进而导致心脑血管的严重疾患;与此同时,由于脂肪分解加强,生成大量酮体,出现酮症酸中毒。

  (三)调节蛋白质代谢

  胰岛素一方面促进细胞对氨基酸的摄取和蛋白质的合成,一方面抑制蛋白质的分解,因而有利于生长。腺垂体生长激素的促蛋白质合成作用,必须有胰岛素的存在才能表现出来。因此,对于生长来说,胰岛素也是不可缺少的激素之一。

  (四)其它功能

  胰岛素可促进钾离子和镁离子穿过细胞膜进入细胞内;可促进脱氧核糖核酸(DNA)、核糖核酸(RNA)及三磷酸腺苷(ATP)的合成。

【影响胰岛素分泌的因素】

  体内胰岛素的分泌主要受以下因素影响:

  (1)血糖浓度是影响胰岛素分泌的最重要因素。口服或静脉注射葡萄糖后,胰岛素释放呈两相反应。早期快速相,门静脉血浆中胰岛素在2分钟内即达到最高值,随即迅速下降;延迟缓慢相,10分钟后血浆胰岛素水平又逐渐上升,一直延续1小时以上。早期快速相显示葡萄糖促使储存的胰岛素释放,延迟缓慢相显示胰岛素的合成和胰岛素原转变的胰岛素。

  (2)进食含蛋白质较多的食物后,血液中氨基酸浓度升高,胰岛素分泌也增加。精氨酸、赖氨酸、亮氨酸和苯丙氨酸均有较强的刺激胰岛素分泌的作用。

  (3)进餐后胃肠道激素增加,可促进胰岛素分泌如胃泌素、胰泌素、胃抑肽、肠血管活性肽都刺激胰岛素分泌。

  (4)自由神经功能状态可影响胰岛素分泌。迷走神经兴奋时促进胰岛素分泌;交感神经兴奋时则抑制胰岛素分泌。

【胰岛素的发现】

  胰岛素于1921年由加拿大人F.G.班廷和C.H.贝斯特首先发现。1922年开始用于临床,使过去不治的糖尿病患者得到挽救。至今用于临床的胰岛素几乎都是从猪、牛胰脏中提取的。不同动物的胰岛素组成均有所差异,猪的与人的胰岛素结构最为相似,只有B链羧基端的一个氨基酸不同。80年代初已成功地运用遗传工程技术由微生物大量生产人的胰岛素,并已用于临床。

  1955年英国F.桑格小组测定了牛胰岛素的全部氨基酸序列,开辟了人类认识蛋白质分子化学结构的道路。1965年9月17日,中国科学家人工合成了具有全部生物活力的结晶牛胰岛素,它是第一个在实验室中用人工方法合成的蛋白质。稍后美国和联邦德国的科学家也完成了类似的工作。70年代初期,英国和中国的科学家又成功地用X射线衍射方法测定了猪胰岛素的立体结构。这些工作为深入研究胰岛素分子结构与功能关系奠定了基础。人们用化学全合成和半合成方法制备类似物,研究其结构改变对生物功能的影响;进行不同种属胰岛素的比较研究;研究异常胰岛素分子病,即由于胰岛素基因的突变使胰岛素分子中个别氨基酸改变而产生的一种分子病。这些研究对于阐明某些糖尿病的病因也具有重要的实际意义。

  胰岛细胞根据其分泌激素的功能分为以下几种:

  ①B细胞(β细胞),约占胰岛细胞的60%~80%,分泌胰岛素,胰岛素可以降低血糖。

  ②A细胞(α细胞),约占胰岛细胞的24%~40%,分泌胰升糖素,胰升糖素作用同胰岛素相反,可增高血糖。

  ③D细胞,约占胰岛细胞总数的6%~15%,分泌生长激素抑制激素。

  糖尿病患者,由于病毒感染、自身免疫、遗传基因等各种发病因素,其病理生理主要是由于胰岛素活性相对或绝对不足以及胰升糖素活性相对或绝对过多所致,也即B和A细胞双边激素功能障碍所致。胰岛素依赖型糖尿病胰岛素分泌细胞严重损害或完全缺如,内源性胰岛素分泌极低,需用外源性胰岛素治疗。非胰岛素依赖型糖尿病,胰岛素分泌障碍较轻,基础胰岛素浓度正常或增高,而糖刺激后胰岛素分泌则一般均较相应体重为低,即胰岛素相对不足。

【胰岛素的分泌】

  胰岛素在胰岛B细胞中合成。胰岛素合成的控制基因在第11对染色体短臂上。基因正常则生成的胰岛素结构是正常的;若基因突变则生成的胰岛素结构是不正常的,为变异胰岛素。在 B细胞的细胞核中,第11对染色体短臂上胰岛素基因区DNA向mRNA转录,mRNA从细胞核移向细胞浆的内质网,转译成氨基酸相连的长肽——前胰岛素原,前胰岛素原经过蛋白水解作用除其前肽,生成胰岛素原。胰岛素原随细胞浆中的微泡进入高尔基体,由86个氨基酸组成的长肽链 ——胰岛素原在高尔基体中经蛋白酶水解生成胰岛素及C肽,分泌到B细胞外,进入血液循环中。未经过蛋白酶水解的胰岛素原,一小部分随着胰岛素进入血液循环,胰岛素原的生物活性仅及胰岛素的5%。

  胰岛素的分子量5700,由两条氨基酸肽链组成。A链有21个氨基酸,B链有30个氨基酸。A-B 链之间有两处二硫键相连。胰岛B细胞中储备胰岛素约200U,每天分泌约40U。空腹时,血浆胰岛素浓度是5~15μU/mL。进餐后血浆胰岛素水平可增加5~10倍。胰岛素的生物合成速度受血浆葡萄糖浓度的影响,当血糖浓度升高时,B细胞中胰岛素原含量增加,胰岛素合成加速。

  胰岛素是与C肽以相等分子分泌进入血液的。临床上使用胰岛素治疗的病人,血清中存在胰岛素抗体,影响放射免疫方法测定血胰岛素水平,在这种情况下可通过测定血浆C肽水平,来了解内源性胰岛素分泌状态。

【体内对抗胰岛素的激素】

  体内对抗胰岛素的激素主要有胰升糖素、肾上腺素及去甲肾上腺素、肾上腺皮质激素、生长激素等。它们都能使血糖升高。

  (1)胰升糖素(胰高血糖素)。由胰岛α细胞分泌,在调节血糖浓度中对抗胰岛素。胰升糖素的主要作用是迅速使肝脏中的糖元分解,促进肝脏葡萄糖的产生与输出,

  进入血液循环,以提高血糖水平。胰升糖素还能加强肝细胞摄入氨基酸,及因能促进肝外组织中的脂解作用,增加甘油输入肝脏,提供了大量的糖异生原料而加强糖异生作用。胰升糖素与胰岛素共同协调血糖水平的动态平衡。

  进食碳水化合物时,产生大量葡萄糖,从而刺激胰岛素的分泌,同时胰升糖素的分泌受到抑制,胰岛素/胰升糖素比值明显上升,此时肝脏从生成葡萄糖为主的组织转变为将葡萄糖转化为糖元而贮存糖元的器官。

  饥饿时,血液中胰升糖素水平显著上升而胰岛素水平下降。糖异生及糖元分解加快,肝脏不断地将葡萄糖输送到血液中。同时由于胰岛素水平降低,肌肉和脂肪组织利用葡萄糖的能力降低,主要是利用脂肪酸,从而节省了葡萄糖以保证大脑等组织有足够的葡萄糖供应。

  (2)肾上腺素及去甲肾上腺素。肾上腺素是肾上腺髓质分泌的,去甲肾上腺素是交感神经末梢的分泌物。当精神紧张或寒冷刺激使交感神经处在兴奋状态,肾上腺素及去甲肾上腺素分泌增多,使肝糖元分解输出增多,阻碍葡萄糖进入肌肉及脂肪组织细胞,使血糖升高。

  (3)生长激素及生长激素抑制激素。

  ①生长激素。由脑垂体前叶分泌,它能促进人的生长,且能调节体内的物质代谢。生长激素主要通过抑制肌肉及脂肪组织利用葡萄糖,同时促进肝脏中的糖异生作用及糖元分解,从而使血糖升高。生长激素可促进脂肪分解,使血浆游离脂肪酸升高。饥饿时胰岛素分泌减少,生长激素分泌增高,于是血中葡萄糖利用减少及脂肪利用增高,此时血浆中葡萄糖及游离脂肪酸含量上升。   ②生长激素抑制激素。由胰岛D细胞分泌。生长激素释放抑制激素不仅抑制垂体生长激素的分泌,而且在生理情况下有抑制胰岛素及胰升糖素分泌作用。但生长激素释放抑制激素本身对肝葡萄糖的产生或循环中葡萄糖的利用均无直接作用。

  (4)肾上腺糖皮质激素。肾上腺糖皮质激素是由肾上腺皮质分泌的(主要为皮质醇,即氢化可的松),能促进肝外组织蛋白质分解,使氨基酸进入肝脏增多,又能诱导糖异生有关的各种关键酶的合成,因此促进糖异生,使血糖升高。

【胰岛素受体】

  胰岛素在细胞水平的生物作用是通过与靶细胞膜上的特异受体结合而启动的。胰岛素受体为胰岛素起作用的靶细胞膜上特定部位,仅可与胰岛素或含有胰岛素分子的胰岛素原结合,具有高度的特异性,且分布非常广泛。受体是一种糖蛋白,每个受体由α、β各两个亚单位组成,并由各两条亚基组成四聚体型受体。α亚单位穿过细胞膜,一端暴露在细胞膜表面,具有胰岛素结合位点。β亚单位由细胞膜向胞浆延伸,是胰岛素引发细胞膜与细胞内效应的功能单位。胰岛素与亚单位结合后,β 亚单位中酪氨酸激酶被激活,使受体磷酸化,产生介体,调节细胞内酶系统活性,控制物质代谢。并由各两条亚基组成四聚体型受体。每种细胞与胰岛素结合的程度取决于受体数目与亲和力,此二者又受血浆胰岛素浓度调节。当胰岛素浓度增高时往往胰岛素受体数下降,称下降调节。如肥胖的非胰岛素依赖型糖尿病人由于脂肪细胞膜上受体数下降,临床上呈胰岛素不敏感性,称抵抗性。当肥胖的非胰岛素依赖型糖尿病患者经饮食控制、体育锻炼后体重减轻时,脂肪细胞膜上胰岛素受体数增多,与胰岛素结合力加强而使血糖利用改善。此不仅是肥胖的非胰岛素依赖型糖尿病的重要发病机制,也是治疗中必须减肥的理论依据。

【药物简介】

  insulin 脊椎动物胰腺中兰氏岛(Yangerhans)的β细胞分泌的激素。1921年由F.G.Banting和C.H.Best所发现。insulin一名系由insula(岛)而来。胰岛素可用酸性乙醇从胰腺中提取。1926年J.J.Abel已分离出胰岛素结晶,结晶中含有微量锌。单体的分子量为5700,在中性溶液中可互相融合。F.Sanger就作为牛胰岛素的蛋白质曾首次确定了其氨基酸的排列顺序(1955)。胰岛素的结构是,通过S—S键在两处把A链(含有N末端以甘氨酸、C末端以天冬酰胺结束的21个氨基酸的残基)和B链(由N末端为苯丙氨酸和C末端为丙氨酸的30个氨基酸残基构成)连结起来的结构。在A链内含有一个二硫键(S—S)。牛、猪、羊、马、鲸等动物的胰岛素,链中特定部位的残基并不相同,有种属差异。胰岛素由于化学合成的成功结构已经清楚。单独的A链或B链并不具有活性,在—S—S—键正确地将两链连结后才产生活性。在β细胞中最先合成的称为胰岛素原(proinsulin),它是由86个氨基酸残基(是人的,而牛的为81个)组成的一条链的前身,在蛋白酶的作用下,去掉肽链的一部分便形成胰岛素分子而分泌到血液中。胰岛素的分泌受葡萄糖等的刺激。胰岛素对物质代谢的调节起着重要作用。对葡萄糖之进入组织细胞、氧化以及由糖转变成糖元和脂肪有促进作用,其结果可使血糖含量降低。此外,它还能使氨基酸进入细胞的速度加快,促进细胞内的蛋白质合成。据谓胰岛素的作用是通过与靶细胞表面的受体进行特异的结合而发生的。但具体的作用机制还不清楚。胰岛素可用于治疗糖尿病,为了延长胰岛素在体内的持续时间,可使用与鱼精蛋白结合的鱼精蛋白胰岛素,或复与氯化锌结合的鱼精蛋白-锌-胰岛素。

  俗称:普通胰岛素;胰激素;因苏林;正规胰岛素 ,短效胰岛素,胰岛素

  类 别:胰岛素及其他影响血糖药

  简 介:

  【药理作用】 促进血循环中葡萄糖进入肝细胞、肌细胞、脂肪细胞及其他组织细胞合成糖原使血糖降低,促进脂肪及蛋白质的合成。

  【适应症】

  主要用于糖尿病,特别是胰岛素依赖型糖尿病: 1.重型、消瘦、营养不良者; 2.轻、中型经饮食和口服降血糖药治疗无效者; 3.合并严重代谢紊乱(如酮症酸中毒、高渗性昏迷或乳酸酸中毒)、重度感染、消耗性疾病(如肺结核、肝硬变)和进行性视网膜、肾、神经等病变以及急性心肌梗塞、脑血管意外者; 4.合并妊娠、分娩及大手术者。也可用于纠正细胞内缺钾。

  【用量用法】

  一般为皮下注射,1日3~4次。早餐前的1次用量最多。午餐前次之,晚餐前又次之,夜宵前用量最少。有时肌注。静注只有在急症时(如糖尿病性昏迷)才用。因病人的胰岛素需要量受饮食热量和成分、病情轻重和稳定性、体型胖瘦、体力活动强度、胰岛素抗体和受体的数目和亲和力等因素影响,使用剂量应个体化。可按病人尿糖多少确定剂量,一般24小时尿中每2~4g糖需注射1个单位。中型糖尿病人,每日需要量约为5~40单位,于每次餐前30分钟注射(以免给药后发生血糖过低症)。较重病人用量在40单位以上。对糖尿病性昏迷,用量在100单位左右,与葡萄糖(50~100g)一同静脉注射。此外,小量(5~10单位)尚可用于营养不良、消瘦、顽固性妊娠呕吐、肝硬变初期(同时注射葡萄糖)。

  【注意事项】

  1.胰岛素过量可使血糖过低。其症状视血糖降低的程度和速度而定,可出现饥饿感、精神不安、脉搏加快、瞳孔散大、焦虑、头晕、共济失调、震颤、昏迷,甚至惊厥。必须及时给予食用糖类。出现低血糖休克时,静注50%葡萄糖溶液50ml。必要时,再静滴5%葡萄糖液。注意必须将低血糖性昏迷与严重酮体血症相鉴别。有时在低血糖后可出现反跳性高血糖,即Somogyi反应。若睡前尿糖阴性,而次晨尿糖强阳性,参考使用胰岛素剂量,应想到夜间可能有低血糖症,此时应试行减少胰岛素剂量,切勿再加大胰岛素剂量。 2.为了防止血糖突然下降,来不及呼救而失去知觉,应给每一病人随身记有病情及用胰岛素情况的卡片,以便不失时机及时抢救处理。 3.注射部位可有皮肤发红、皮下结节和皮下脂肪萎缩等局部反应。故需经常更换注射部位。 4.少数可发生荨麻疹等,偶有过敏性休克(可用肾上腺素抢救)。 5.极少数病人可产生胰岛素耐受性:即在没有酮症酸中毒的情况下,每日胰岛素需用量高于200单位。其主要原因可能为感染、使用皮质激素或体内存在有胰岛素抗体,能和胰岛素结合。此时可更换用不同动物种属的制剂或加服口服降血糖药。 6.低血糖、肝硬变、溶血性黄疸、胰腺炎、肾炎等病人忌用。 7.注射液中多含有防腐剂,一般不宜用于静注。静注宜用针剂安瓿胰岛素制剂。   胰岛素的主要生理作用是调节代谢过程。对糖代谢:促进组织细胞对葡萄糖的摄取和利用,促进糖原合成,抑制糖异生,使血糖降低;对脂肪代谢;促进脂肪酸合成和脂肪贮存,减少脂肪分解;对蛋白质;促进氨基酸进入细胞,促进蛋白质合成的各个环节以增加蛋白质合成。总的作用是促进合成代谢。

胰岛素的存放方法

  胰岛素须保存在10℃以下的冷藏器内,在2℃~8℃温度的冰箱中可保持活性不变2~3年,即使已部分抽吸使用的胰岛素也是如此。使用时,温度不超过30℃和大于2℃的地方均可,但必须避开阳光,以防失效。

  正在使用中的胰岛素,只要放在室内阴凉处就可以了。开瓶使用中的瓶装胰岛素可以放在冰箱的冷藏室中,保存约3个月。使用中的胰岛素笔芯不要和胰岛素笔一起放回冷藏室中,可随身携带保存4周。

  混浊型胰岛素若是被震摇几个小时或是没有适当保存时便可能会形成团块,这时胰岛素就应该丢弃。

  注射胰岛素有讲究 三种方法

  目前全球有近1.8亿人正在与糖尿病进行艰苦的“持久战”,很多病人需要长期规律的胰岛素治疗,都面临同样的困惑,即如何选择适合自己的输注方式。

  自胰岛素问世以来,注射装置就不断革新。注射器注射、胰岛素高压注射器、胰岛素注射笔、胰岛素泵是胰岛素注射装置发展史上的“四部曲”。

  注射器:经济

  胰岛素注射器有两种,一种为1毫升容量的普通注射器,这种注射器上标注的刻度标识为“ml”(毫升),病人要根据所用的胰岛素注射液含量进行单位换算,优点是经济,可重复使用。

  另一种注射器是专用“BD”针,直接标有胰岛素注射单位。高压注射器由于太过笨重,已被淘汰。

  胰岛素笔:不疼

  胰岛素笔是将胰岛素和注射装置合二为一。胰岛素储存在笔芯中,胰岛素用完后更换笔芯,笔身是一个可调节剂量的注射仪器,专门设计的一次性针头超细、超短,因此注射时引起的疼痛感非常轻微。患者使用时只需把剂量按钮调节到所需要的剂量单位,然后把针头刺入皮下组织,一按剂量按钮,即可完成注射。

  胰岛素笔有下列优点:1.方便,免去繁琐的抽取胰岛素过程,携带方便;2.注射过程更加简单、隐蔽;3.为视力不佳甚至失明的病友带来方便;4.剂量更精确,最小输注量1单位;5.基本无痛。胰岛素笔的缺点是需用专门的胰岛素笔芯,价格比瓶装贵。

  胰岛素泵:接近人体需要

  胰岛素泵是一个形状、大小如同BP机,通过一条与人体相连的软管向体内持续输注胰岛素的装置。俗称“人工胰腺”。

  胰岛素泵的优点在于:

  1.与一日多次注射相比,能更好地控制血糖,低血糖发生率少;

  2.生活自由度大;

  3.胰岛素输注精度能达到0.1单位,尤其适用于对小剂量胰岛素敏感的儿童及瘦型成年糖尿病患者;

  4.操作方便,在任何时间、任何场所,只需按几下按钮,胰岛素就自动地输入体内;

  5.只需每几天更换一次输注管路,对皮肤损伤小。

  使用胰岛素泵应具备以下条件:能够进行自我血糖监测;要有良好的生活自理能力和控制血糖的主动性;有一定的文化知识和理解能力;要有一定的经济能力。

  患者可根据自身情况,结合不同输注方式的特点,选择最适合自己的方式,更好地控制血糖,提高生活质量。

  胰岛素反应 有全身及局部反应两类。全身反应有:

  ⑴低血糖反应:最常见。多见于Ⅰ型中脆性型或Ⅱ型中重型,特别是消瘦者。一般由于体力活动运动太多,偶或饮食太少、减量、失时或剂量过大。症状有饥饿感、头晕、软弱、出汗、出悸,甚而出现神经症状,如定向失常、烦躁不安、语无伦次、哭笑无常,有时可更严重,甚而昏厥、抽搦、状似癫痫,昏迷不醒,以致死亡。治程中应教会病人熟知此反应而随时提高警惕,及早摄食糕饼糖食或糖水以缓解,较重者应立即静脉注射50%葡萄糖40ml以上,继以静脉滴注10%葡萄糖水直至清醒状态;有时可先注胰高血糖素,每次皮下或肌肉1mg,如低血糖反应历时较久而严重者还可采用氢化可的松,每次100~300mg于5%~10%葡萄糖水中静滴。当低血糖反应恢复后必须谨慎估计下次剂量,分析病情,以防再发。在多次低血糖症后由于刺激胰岛α细胞及肾上腺可发生反应性高血糖(Somogyi效应),由此常导致脆性型,必须尽量避免。

  ⑵过敏反应:少数病人有过敏反应,如荨麻疹、血管神经性水肿、紫癜,极个别有过敏性休克。此种反应大致由于制剂中有杂质所致。轻者可治以抗组胺类药物,重者须调换高纯度制剂如单组分人胰岛素,由于其氨基酸序列与内源性胰岛素相同,且所含杂质极少,引起过敏极罕见,或可改用口服药。必需时还可采用小剂量多镒胰岛素皮下注射脱敏处理。

  ⑶胰岛素性水肿:糖尿病未控制前常有失水失钠,细胞中葡萄糖减少,控制后4~6日可发生水钠滞留而水肿,可能与胰岛素促进肾小管回吸收钠有关,称为胰岛素水肿。

  ⑷屈光失常:胰岛素治程中有时病人感视力模糊,由于治疗时血糖迅速下降,影响晶状体及玻璃体内渗透压,使晶状体内水分逸出而屈光率下降,发生远视。但此属暂时性变化,一般随血糖浓度恢复正常而迅速消失,不致发生永久性改变。此种屈光突变多见于血糖波动较大的幼年型病者。

  局部反应有:①注射局部皮肤红肿、发热及皮下有小结发生,多见于NPH或PZI初治期数周内,由于含有蛋白质等杂质所致,改变注意部位后可自行消失,不影响疗效。②皮下脂肪萎缩或增生,脂肪萎缩成凹陷性皮脂缺失,多见于女青年及小儿大腿、腹壁等注射部位;皮下组织增生成硬块,多见于男性臀部等注射部位,有时呈麻木刺痛,可影响吸收,须更换注射部位而保证治疗。   6.胰岛素抗药性 很少数病者有胰岛素抗药性,每日胰岛素需要量超过200U,历时48小时以上,同时无酮症酸中毒及其他内分泌病引起的继发性糖尿病者称为胰岛素抗药性。此组不包括肥胖、感染、肝病、血色病、白血病、类风湿性关节炎、脂肪萎缩性糖尿病等所致的抗药性。据近年来多方面研究,大多认为此种抗药性属胰岛素免疫反应,由于注射胰岛素后血液中产生抗胰岛素抗体,一般属IgG类,尤以牛胰岛素易于产生。因而,此处的胰岛素抗药性不要与病理生理中的胰岛素抵抗相混淆。

  处理方案:①改用单组分人胰岛素可明显减少抗体产生,缓解抗药性;②试改用口服抗糖尿病药物及其相互的联合;③在抗体浓度明显增高的患者,必要时可试服强的松,30mg~40mg/d,分3次服,大多也可于1~2周内使胰岛素剂量明显减少,见效后渐减,停强的松。治程中,须密切观察病情和血糖,以免在抗药性消退时发生反复严重的低血糖症。

  型糖尿病 早用胰岛素

  传统的Ⅱ型糖尿病治疗方案遵循着从生活方式干预开始,继而一种口服药到多种口服药联合,最终使用胰岛素的逐步递增方法。长期以来,由于对胰岛素的使用存在认识偏差,许多病人宁可血糖长期控制不好,也不愿意使用胰岛素,白白错失了应用胰岛素的最佳时机,从而导致并发症的出现,而这些并发症完全可以通过早期应用胰岛素来减少或者避免。

  许多患者认为,只有在糖尿病病情非常严重的情况下,才会选择用胰岛素治疗;而且担心长期注射胰岛素会产生依赖。赵家军博士告诉记者,胰岛素是人体胰腺β细胞分泌的唯一能降低血糖的物质,研究表现其并不存在依赖性,而且Ⅱ型糖尿病一般不需要终生应用。

  对早期Ⅱ型糖尿病患者进行适当的胰岛素治疗,在短期内有效控制高血糖,并逆转“糖毒性”对胰岛β细胞的损害,这已成为目前治疗Ⅱ型糖尿病的新趋势。预防糖尿病并发症最好的办法是从一诊断糖尿病开始采用最佳的治疗方法尽快地使血糖下降,以获得最佳的代谢控制,从而预防、阻止或延缓糖尿病并发症的发生和发展。

  有研究证实,对Ⅱ型糖尿病病人进行早期强化治疗,同样可以显著减少慢性微血管并发症的发生、发展。因此,尽管糖尿病无法根治,但通过对Ⅱ型糖尿病病人尽早实施胰岛素治疗,可使血糖长期严格控制达标,大大减少糖尿病慢性并发症(尤其是微血管并发症)的发生率。而且,给予适量的胰岛素治疗,有利于维持正常的糖代谢和脂代谢,改善胰岛素抵抗,对心血管具有保护作用。

  同时越来越多的研究表明胰岛素不仅可以控制血糖,同时还可以扩张血管、改善循环、抗炎症反应,预防各种并发症,因此专家认为早期及长期正确使用胰岛素对身体有益而无害,胰岛素是身体的自然物质,注射它既没有毒性也不会成瘾。

  胰岛素家族的新锐

  速效人胰岛素类似物

  速效人胰岛素类似物的主要特点是:

  1.起效快,皮下注射后15分钟起效,可以在餐前即刻甚至餐后立即注射,不需提前半小时,提高了病人用药的依从性;

  2.达峰快,注射后15分钟起效,30~60分钟达到药效高峰,恰好与餐后血糖高峰时间相匹配,控制餐后血糖效果好;

  3.药效维持时间短,大约在3小时左右(2~4小时),能够很好地控制当餐后血糖而且不容易发生低血糖。

  长效人胰岛素类似物

  “长效胰岛素类似物(lantus)”配合餐前注射“超短效胰岛素(lispro或aspart)”的强化治疗方案进行强化治疗,更加符合胰岛素的生理性分泌,血糖控制更佳,发生低血糖的机会更少。由于可以在餐前即刻注射,增加了病人就餐的灵活性,因而病人的治疗依从性明显提高。睡前用甘精胰岛素代替中效胰岛素(nph)与白天的口服降糖药的联合治疗,降糖效果更好更安全。

  注射“胰岛素”的正确方法

  胰岛素是糖尿病患者的常用药,许多病人都需要在家自己注射胰岛素,那么应该如何正确、安全地注射胰岛素呢?

  正确选择注射部位和工具

  每次注射部位都应轮换,可按照以下原则:选左右对称的部位轮流注射,如先选左右上臂,并左右对称轮换注射。待轮完后,换左右腹部。这样可避免因不同部位胰岛素吸收不同而造成血糖波动。

  常用注射部位有上臂外侧、腹部、大腿外侧、臀部,不同部位胰岛素吸收由快至慢,依次为腹部、上臂、大腿、臀部,如果偶尔吃饭时间提前,则选腹部脐外五厘米以外之处;如果推迟,则选臀部注射。

  注射工具应选用胰岛素专用注射器或胰岛素笔,上述注射工具操作简单,剂量准确,针头幼细,大大减轻了疼痛感。在这里,特别要提醒正在注射胰岛素的糖尿病朋友,无论是专用注射器还是笔用针头,均应为一次性使用,重复使用会使针头变钝,产生肉眼不易察觉的缺口和倒钩,增加了疼痛感,甚至有断针和皮肤感染的危险。

  胰岛素的购买与储存

  用完胰岛素需要再到医院购买时,一定要携带病历及用完的胰岛素瓶子,以便医生准确地开处方。若到药店购买,要注意检查有效期以及是否与医生要求使用的胰岛素相符合。

  未开封的胰岛素应放在冰箱冷藏室内(温度在2-8℃)储存,不能放入冷冻室,否则会破坏胰岛素的蛋白质成分。如果没有冰箱,应放在阴凉处,且不宜长时间储存。使用中的胰岛素可放在室温下,避免阳光直射,使用时间不超过30天。

  学会自我观察

  经常用手指按压注射部位有无硬结、疼痛感,严重时应请教专业医护人员,打针时要避开这些部位。

  注射胰岛素的人,应自备血糖仪,保证每天自测血糖,了解血糖波动情况,每次将结果记录下来,以便复查时医生调整胰岛素用量。

  随身携带含糖食物以备自救,包括2-4块糖果或方糖、5-6块饼干、一勺蜂蜜等。如有心慌、饥饿感、头晕、出冷汗等症状,应立即自测血糖或去医院,进食含糖食物后,一般能在15分钟内缓解,仍未缓解者应到医院诊治。

  DCCT和UKPDS让世界改变了看法

  糖尿病是一组可以由多种因素引起的临床表现具有多样性的、以糖代谢障碍为核心的复杂症候群。正因为复杂,所以至今在医药界乃至社会公众中对糖尿病的认识及观念都难以取得一致。要验证某种学说并改变人们的观念十分困难。比如人们过去一直将占总数90%以上的所谓2型糖尿病称着非胰岛素依赖型糖尿病,最后不到万不得已都不主张使用胰岛素,很多患者还误以为打胰岛素会成瘾,一旦用上就再也撤不下来等等。为了弄清楚胰岛素疗法在糖尿病防治、尤其是在延缓各种慢性并发症中的作用,发达国家进行了广泛而深入的研究,其中DCCT和UKPDS这两项著名的大型试验让全世界在很大程度上改变对糖尿病的看法。

  DCCT试验(糖尿病控制与并发症试验)目的在于弄清楚对1型糖尿病患者实行强化胰岛素治疗是否可以影响慢性并发症的进展。该研究由美国卫生部资助,开始于1983年,涉及29个医学中心,对1441例1型糖尿病患者进行了近10年的随访,耗资近10亿美元。试验结果表明:胰岛素强化治疗组(每天注射胰岛素3-4次以上或采用胰岛素泵治疗,实行严格的血糖监测和控制)与胰岛素常规治疗组(每天注射1-2次胰岛素,但并无严格的血糖控制目标)对比,患者视网膜病变发生率减少50-76%;肾脏病变发生率减少34-56%;神经病变发生率减少69%;心血管病发生风险下降约40%。

  举世瞩目的英国前瞻性糖尿病研究(UKPDS)则回答了在2型糖尿病患者中应用胰岛素强化治疗的作用和意义。该试验从1976年开始策划,前后历时20年,有23个医疗中心及5102名2型糖尿病患者参与试验,耗资2300万英镑。试验结果表明:强化胰岛素治疗能够通过降低血糖使2型糖尿病的视网膜病变、神经病变及肾脏病变明显改善,如糖化血红蛋白(HbA1c)每降低1%,可使微血管并发症降低35%,与糖尿病相关的死亡发生率下降25%等。

  上述两项试验,以不可争议的数据向世人揭示了胰岛素疗法无论在1型还是在2型糖尿病防治中的地位和作用,它们让全世界改变了看法。今天,一个国家在2型糖尿病患者中使用胰岛素的比例已成为衡量这个国家糖尿病治疗水平的一项重要标志。

  哪些人需要胰岛素?

  1、1型糖尿病患者

  该型糖尿病患者的体内分泌胰岛素的胰岛β细胞被完全破坏,彻底丧失分泌胰岛素的功能,如果不通过注射的办法向体内补充胰岛素,该型的糖尿病患者体内就要出现严重的代谢紊乱如酮症酸中毒,并进而发展至昏迷和死亡。在1921年胰岛素被发现之前,几乎所有的1型糖尿病都死于酮症酸中毒性昏迷。因此,对于1型糖尿病患者而言,胰岛素首要的是用来救命,然后才是用它来治病,即通过用胰岛素来控制血糖,减少慢性并发症。

  2、“久病”的患者

  2型糖尿病包括两种情况:一是体内胰岛素水平明显降低,二是对胰岛素不敏感而使胰岛素相对缺乏。由于体内尚能分泌胰岛素,多数2型糖尿病患者不会因为不使用胰岛素而出现生命危险,所以以前也把该型糖尿病称作“非胰岛素依赖型糖尿病”。

  但是,对2型糖尿病患者的长期观察发现,多数患者大约在患病8—10年左右就不能仅靠口服降糖药来控制血糖了,这时如果不用胰岛素,血糖就难以得到满意的控制,由高血糖所导致的糖尿病并发症就会出现明显的进展。因此,从减少并发症、延长患者寿命的角度上讲,当疾病进展到一定的阶段,也必须用胰岛素。

  3、早期患者强化治疗

  此外,我们和国际上其他研究人员还发现,给新诊断的2型糖尿病患者使用为期2周的强化胰岛素治疗后,可以使有些患者在3年内不需要任何药物,仅仅通过饮食控制和运动就能维持理想的血糖水平。

  因此,刚被诊断2型糖尿病患者如果饮食和运动治疗的效果不好,也最好使用胰岛素短期强化治疗,这样可以让患者的胰岛β细胞休息一段时间之后能更好地分泌胰岛素。

  4、“多病”的患者

  这包括两种情况,一是其他疾病或者状况可能引起致命性的代谢紊乱,比如需要做大手术、遭受严重创伤、伴有严重感染的糖尿病患者,他们可能会发生酮症、酮症酸中毒或非酮症性的高渗昏迷,危及生命。二是其他疾病会引起口服降糖药蓄积中毒。比如肝肾功能不全或者严重缺氧(比如心功能衰竭)的患者,因为口服降糖药在体内代谢不畅,可使药物蓄积,副作用加重。

  胰岛素是生物体内的天然物质,是目前所有的降糖药中最安全的药物。糖尿病患者在需要使用胰岛素时,应该毫不犹豫地接受胰岛素治疗。否则就会有生命危险,或因血糖控制不好而使生活质量受到严重影响,甚至缩短寿命。

  5、糖尿病孕妇

  虽然口服降糖药物可以控制糖尿病孕妇的高血糖,但药物对胎儿是否有影响却没有临床试验的证据。而胰岛素是生物体内自然的激素,它的安全性是可靠的。

  因此,糖尿病孕妇当血糖高到依靠饮食和运动而不能控制时,必须使用胰岛素来控制血糖,保证母婴安全。

【影响胰岛素分泌的因素】

  人体体内胰岛素的分泌主要受以下因素影响:

  1、血糖浓度是影响胰岛素分泌的最重要因素。口服或静脉注射葡萄糖后,胰岛素释放呈两相反应。早期快速相,门静脉血浆中胰岛素在2分钟内即达到最高值,随即迅速下降;延迟缓慢相,10分钟后血浆胰岛素水平又逐渐上升,一直延续1小时以上。早期快速相显示葡萄糖促使储存的胰岛素释放,延迟缓慢相显示胰岛素的合成和胰岛素原转变的胰岛素。

  2、进食含蛋白质较多的食物后,血液中氨基酸浓度升高,胰岛素分泌也增加。精氨酸、赖氨酸、亮氨酸和苯丙氨酸均有较强的刺激胰岛素分泌的作用。

  3、进餐后胃肠道激素增加,可促进胰岛素分泌如胃泌素、胰泌素、胃抑肽、肠血管活性肽都刺激胰岛素分泌。

  4、自由神经功能状态可影响胰岛素分泌。迷走神经兴奋时促进胰岛素分泌;交感神经兴奋时则抑制胰岛素分泌。

胰岛素增敏剂类降糖药

  胰岛素增敏剂主要指噻唑烷二酮类药物(也称格列酮类),它是20世纪80年代初期研制成功的一类具有提高胰岛素敏感性的新型口服降糖药物。其作用机制为:能增强骨骼肌、脂肪组织 对葡萄糖的摄取并降低它们对胰岛素的抵抗,降低肝糖原的分解,改善胰岛细胞对胰岛素的分泌反应。减轻胰岛素抵抗,改善B细胞功能,改善糖代谢。

  胰岛素的单位

  胰岛素有笔芯和瓶装两种剂型,笔芯型要配合注射笔才能使用。胰岛素的计量单位是IU,瓶装剂型一般为40IU一毫升,多是400IU一瓶,也称为400单位一瓶。笔芯多是300IU一支。一盒一支。IU是国际计量单位和U是相通的,二者等量。胰岛素的吸收和注射方式和被注射者的身体情况有直接关系。静脉注射吸收最快。据说一千单位的胰岛素足以杀死一头大象。