话费卡号查询号码:利用微生物菌体开发蛋白饲料资源

来源:百度文库 编辑:偶看新闻 时间:2024/05/02 07:52:40
世界蛋白质年产量在9000万吨左右,由于人口达到50多亿,相当于每人每天只有45克,远低于世界粮农组织(FAO)规定的标准68克/天,而且消费差异很大,在欧洲为人均100克/天,在日本为人均80克/天,中国为36~46克/天,而在发展中国家则有更低的,因粮食不足是成为婴幼儿发育不全,死亡率高的一个重要原因。到21世纪初,世界人口将达到60多亿人,要确保充足的蛋白质供应将是一个相当严重的问题。
在我国,随着耕地的不断减少,农业增产的余地与潜力越来越少,种植结构的调整也面临着来自人口的压力,而我国饲料工业对蛋白质原料的需求将达到近2000万吨,届时缺口将越来越大,除了用外贸来弥补外,行业内的节流开源是一条重要出路,如充分利用油料种子等非常规饲料,轻工业下脚料,鱼类加工下脚料,绿叶等。另外,微生物蛋白质Single Cell Protein(SCP)将是一个令人瞩目的开发途径。
一、微生物细胞的营养
如表一所述列出了常用作食品和饲料的四类微生物的组成成分:
表一:微生物细胞的化学成分(干物质中的含量)单位%
微生物品种
碳水化合物
蛋白质
核酸
脂类
灰分
酵母菌
25~40
35~60
5~10
2~50
3~9
霉菌
30~60
15~50
1~3
2~50
3~7
细菌
15~30
40~80
15~25
5~30
5~10
藻类
10~25
40~60
1~5
10~30
4~8
各种成分随微生物的种类、培养基组成、培养条件、生长时间的不同而有变化。
可见,酵母、细菌、藻类的蛋白质含量较高,适于作蛋白饲料。另外,微生物菌体的另一特点是核酸含量较高,尤其又以对数生长期的菌体核酸含量最高。同时,微生物的脂肪含量也较高。
表二列出了作为微生物蛋白而现已开发的数种微生物的粗蛋白和氨基酸组成。
表二:鱼粉、豆粕、及菌体中的粗蛋白和氨基酸组成(%、g16N)
蛋白质
粗蛋白
Ile
Leu
Phe
Thr
Try
Del
Arg
Lys
Met
Cys
His
含SAA
FAO标准
3.0
6.5
4.0
1.0
4.0
5.5
2.5
鱼粉
66.2
4.7
7.6
4.2
4.3
1.2
5.3
5.8
7.7
3.0
0.9
2.4
3.9
豆饼
45.0
5.4
7.7
5.1
4.0
1.5
5.0
7.7
6.5
1.4
1.4
2.4
2.8
酵母(正烷烃)
60.5
4.9
7.3
4.5
5.0
1.2
6.0
5.2
7.1
1.6
1.3
2.0
2.9
酵母(纸浆废液)
46.0
5.2
6.2
4.6
3.8
1.1
6.2
5.0
4.3
1.1
1.3
2.0
2.4
扣囊拟内 孢霉菌
53.2
4.4
7.3
4.0
5.4
1.2
5.5
5.3
6.4
1.4
0.5
1.8
1.9
白地霉
58.5
4.6
7.0
3.9
4.4
1.2
5.6
7.2
7.4
1.6
1.0
2.6
2.6
氢细菌
75.2
5.3
9.5
5.1
5.3
1.0
6.7
4.9
6.7
2.8
---
2.8
---
细菌 (甲醇)
75
4.8
7.9
3.6
4.6
1.0
8.1
8.0
6.4
2.5
0.7
1.6
3.4
产黄青霉
57
4.5
8.1
5.5
4.1
---
5.1
---
6.4
1.6
---
1.6
---
曲霉
58.4
4.3
6.9
3.7
4.6
---
5.8
7.2
7.3
1.5
1.1
---
2.6
担子菌
58.2
4.2
6.6
2.2
4.1
---
5.9
5.8
7.7
0.9
---

---
小球藻
58.2
4.2
8.1
5.1
3.6
1.0
5.1
5.9
7.7
1.3
---
1.8
---
注:“---”表示数据不祥
从表中可以看出,一般除含硫氨基酸不足之外,均能保持良好的平衡,赖氨酸含量较高,从氨基酸的构成来看,单细胞蛋白(SCP)比鱼粉稍差而优于豆粕;与鱼粉相比,SCP的维生素中含有丰富的B族维生素和β-胡萝卜素、麦角甾醇等,营养价值较高,但B12稍嫌不足,(一般植物原料中不含B12),另外,磷、钾都较丰富,但钙含量较少,因此若补充以蛋氨酸、VB12和钙等,可获得与鱼粉同样的营养试验效果。
当然在实际应用中,往往得到的是微生物菌体和培养基残基的混合物,所以并非纯菌体,在实际应用中要引起注意。例如固态发酵蛋白饲料得到的就是由70%左右的培养基残基和30%的菌体组成的混合物,但它也有它的优点,如活性物质含量比较丰富,投资少,工艺简单等。这就要求我们在实践中根据不同的资源环境和市场需求,以确定不同的工艺方案,并采取诸如浓缩提纯、复配、酶化(自溶)、膨化等后序处理工艺加以补充,以达到一定的市场目的。
二、微生物菌体蛋白饲料的生产原料
就目前来看,饲料工业中应用微生物的实例主要有,菌体蛋白饲料、微生态制剂、饲用酶制剂、微贮饲料等。其中微生态制剂和酶制剂的生产原料都是精料,如麦夫、鱼粉、豆粕、玉米等。而生产菌体蛋白饲料和微贮饲料的原料则多种多样,大多为农副产物和工业下脚料。本文也将重点介绍这些原料,各地可以根据当地的具体条件和资源情况,选定最有利的微生物种类和原料组合,创造社会财富。
微生物的繁殖培养所需的元素主要有碳、氢、氧、氮、磷、硫等,而钾、镁、铁等只需少量补充即可,即以盐的形式溶于水中的量即足够(一般农副产物中已足够,无须额外补充)。氧和氢可以从空气中的氧和水中提供,或有机物中摄取,没有必要特别用作原料。至于氮,若能将空气中的氮固定下来当然最好,有些微生物具有固定氮的能力,但有效地利用它们则是仍有待将来解决的难题,而一般的微生物都能很好地利用氨、铵盐、硝酸盐、和尿素等来获得氮源,与碳源相比,氮源需求量甚少,且它们均是工业品,所以供应不成问题。接下来是磷,可用无机磷,用量极少,同样也不成问题。实际上,以上的元素在一般的农副产物中均很丰富,在用农副产品作原料时,可不需考虑添加,现在的问题是如何去获得大量的廉价的碳源的问题,不仅是因为碳源在菌体细胞干物质的组成中占了60%~70%,而且因为它是众多工农林牧业的下脚料的主要组成部分。
根据碳源利用形式的不同可将微生物区分为两大类,一类是利用有机物中的碳源而生长的异养微生物,一类是能利用二氧化碳中的碳源而生长的自养微生物。见表三。
表三:利用不由碳源的微生物种类
原料
微生物种类
有机原料:
碳水化合物及工农
林牧业下脚料
烃类及石油化工品
正烷烃
甲烷
甲醇
乙醇
醋酸
霉菌  酵母菌
细菌  放线菌  担子菌
酵母菌  细菌
细菌
酵母菌  细菌
酵母菌  细菌  担子菌
霉菌 酵母菌 藻类 细菌
无机资源(二氧化碳):
利用光能
利用化能
藻类  光合细菌
细菌(化能自养微生物)
2、1  用农林牧渔业资源生产菌体蛋白
第一次世界大战期间,德国以酸水解木屑生产食用酵母,制造人造肉,成为微生物用作食品与饲料的开端。林产工业中的造纸纸浆废液也被广泛用来生产酵母,从而不仅得到了菌体蛋白,而且还保护了环境。
表四:以农林牧渔业资源生产的微生物蛋白
原料
微生物种类
废糖蜜
亚硫酸纸浆废液
淀粉渣,废糖蜜
淀粉废水
甘蔗渣  甜菜粕
咖啡废水
柑桔加工废液
饲料腐烂废物
木薯渣
棉籽饼 菜籽饼
次粉  玉米蛋白粉等
干酪乳清
假丝酵母属Candida 酵母属Saccharomyces
产朊假丝酵母Candida Vtilis
拟青霉属Paecilomyces
禾本科镰孢霉Fusarium graminearum
扣囊拟内孢霉Endomyces fibuligera
绿色木霉Trichoderma viride
溜曲霉Aspergiuus ramarii kita
米曲霉Asper oryzae
黑曲霉Asper niger
高温放线菌
黑曲霉Asper niger 白地霉Geotrium
扣囊拟内孢霉 黑曲霉 米曲霉 白地霉
酵母菌 乳酸菌 光合细菌 等
乳酸菌 脆壁克鲁维酵母
表中仅列出一些已开发成功的例子,这样的例子仍有很多,举几例典型介绍如下:
2.1.1  在日本,已进行了从稻草、煮大豆汁、黄浆水、鱼类加工废液、贻贝液、锯木屑、稻壳等资源中开发微生物蛋白的研究,对资源日益贫乏的日本来说尤为重要。
热带地方的蛋白质资源也日益紧张,所以一些东南亚国家都利用丰富的木薯、糖蜜、棕榈油等生产菌体蛋白,如大量的棕榈油被用来培养白球拟内酵母Torulopsis Candida,另外,大量开发海藻、螺旋藻等作为食品和鱼类饵料。
2.1.2  纤维素是人类最大的一项废弃资源,利用它开发出人类需要的蛋白质是一个世界课题。70年代后期,以纤维素类物质为原料生产SCP的工作日渐兴起,1965年,Crawfod.D.L和Dunlap.C.E等人探索纤维素液态发酵的直接转化法,终因效率低,能耗高而不适用;Bames等人利用纤维素原料进行固态发酵,认为很有生命力,优点在于投资少,能耗低,效率高。
1985年,加拿大的Bajon.A.M等人开始了甜菜粕、甘蔗渣的半固体发酵研究;1988年法国的Durand.A和波兰人Grajek.W等几乎同时发表了甜菜粕的固体发酵研究,Durand利用绿色木霉变异株Trichoderma vivide T.S发酵,产品粗蛋白达20%以上;美国陆军Natick实验室用Trichoderma ReeseiQM9419发酵甜菜粕后粗蛋白为13%;美国菌株储藏委员会的Thielavil terrestris ATCC38088发酵甜菜粕产品粗蛋白质为13%以上;另外加拿大制浆和造纸研究所的Sprotrichum thermphileNo89发酵甜菜粕产品粗蛋白为14.6%;中国科学院化工冶金研究所研究的“甜菜粕固态发酵技术成果”用溜曲霉No827Aspergillus tamarii发酵甜菜粕粗蛋白达25~27%,产品收率达70%,发酵时间为3~4天,已在内蒙古自治区赤峰市糖厂建厂运行。
湖南省郴州微生物研究所研究出用稻壳水解、液体深层发酵生产酵母蛋白,每3吨稻壳可得到1吨酵母、0.3吨多孔二氧化硅、40公斤糠醛、50公斤石膏。
宜春高新技术专利产品开发中心开发的活力99生酵剂,可发酵各种农作物秸杆,甘蔗叶、秧藤类等,代替部分全价饲料喂猪,经济效益较好。
纤维素资源中,如植物秸杆、壳类、木屑、糖渣等农林废弃物,一般含有40~50%的纤维素,15~35%的半纤维素,和20~30%的木质素,用水解的方法可将其转变为还原糖,然后发酵生产饲料酵母。50年代末,如黑龙江南岔木材水解厂,采用稀酸加压渗滤法,以木材水解生产SCP,积累了丰富的经验。
2.1.3  吉林石岘造纸厂等利用造纸废水生产饲料酵母,年生产能力达到1200吨,产品粗蛋白含量达到40%以上。
2.1.4  关于固态发酵饲料,尤其是酵母饲料是近年来发展最为迅速的产业之一,它能充分利用各种工业下脚料和农副产品,对我国的饲料工业的节流开源带来的深远的影响。
如广东省微生物研究所的郭维烈先生以4320协生双菌发酵木薯渣和果渣等,生产4320菌体蛋白饲料,已在全国多个地方推广。广州中山大学的钟英长教授的霉菌发酵棉菜籽饼,既能脱毒,又能提高原料的生物效价。武汉粮食工业学院罗远洲的乳酸菌厌氧发酵法处理菜籽饼粕可大幅度提高产品的营养价值,脱毒率在95%以上。山东微生物所以废果渣为原料生产SCP。山西经作所、河北农科院等研究出各类农副产品加工生产SCP的方法。河北沧州厚德生物技术研究所从1982年以来,开创了我国固态发酵饲料酵母的先例,其技术转让的厂家生产能力总和达到20万吨以上。宜春高新技术专利产品开发中心钟启平先生发明的PBC技术处理菜籽粕,产品性能居国内领先水平,另外还开发有棉籽粕发酵,果渣、各类糠饼,轻工业下脚料、糟渣等生产酵母饲料技术。
青贮饲料,微贮饲料等也属于厌氧固态发酵,菌株以乳酸菌为主,到90年代已发展到年产量达4000多吨。
发酵血粉也具有广泛的发展前景,不仅因为原料广泛,而且因为产品性能极佳。将新鲜的畜血(可先用柠檬酸三钠保鲜贮藏)与麦夫按一定比例混合,接种米曲霉等,发酵烘干而得,产品粗蛋白可达45~60%,粗蛋白消化率可达到93~97%,相反,不经发酵处理的喷雾干燥血粉,虽然其粗蛋白含量达84%,但它的粗蛋白消化率却仅为16%,两者有天壤之别,且后者的血腥味浓,适口性不好。我国近年来实行定点屠宰,血源较为集中,据我国1998年统计,全国年出栏生猪5亿头,按每头猪产鲜血3公斤计,则一年可产鲜血150万吨,相当于纯血粉30多万吨(血中固形物含量为22%),若按30%的收集率计算,也可产血粉9万吨,可生产发酵血粉为40多万吨,年利税可达1亿元,目前50%CP的发酵血粉价格在3200~3800元/吨左右(1996年)。
2.1.5  鸡粪发酵饲料。美国俄亥俄州立大学在鸡粪中加入木屑粉、麦秸、稻壳等,用以作鸡粪发酵的碳源,在良好的通风条件下,微生物大量繁殖,发酵时鸡粪中的尿酸转化为氨,氨再被微生物利用制造菌体蛋白。襄樊市生化所研制的鸡粪发酵饲料可驱除臭味,增加特异香味,粗蛋白达29%,还原糖增加3.5%以上,饲养试验表明,以30%的比例喂猪,生长快,抗病力强,肉料比达1:3.4。天津东海饲料试验厂发明了充氧动态发酵机,可发酵鸡粪,效果良好。宜春高新技术专利产品开发中心的活力99生酵剂发酵鸡粪,效果也很好。
2.1.6  动物下脚料的处理,角质蛋白的物理与生物处理技术,如猪毛资源,有6万吨以上;蹄壳资源,有3万吨;制革下脚料(边角料,磨面,削边,兰皮边料)有30万吨;羽毛粉资源为近100万吨。它们的消化率很低,分别为羽毛粉32%,皮革蛋白粉48%,碲壳粉32%,若把它们加入到固态发酵基料中进行发酵处理,则血粉的消化率可提高到95%以上,羽毛粉蛋白消化率可提高到80%,皮革蛋白消化率可提高到90%,蹄壳蛋白粉消化率可提高到76%,若再结合事先热喷、膨化处理则效果更佳。
也可用生物酶处理角质蛋白,特点是产品收得率高,产品中游离氨基酸含量高,易被动物消化吸收,加工工艺简单,投资少,技术要求不高等,生产工艺是首先制造酶液,或干脆先短时间固态发酵,(产生100u/g的蛋白酶即可),也可选用市售酶制剂,如猪胰蛋白酶,工艺为:角质蛋白粉→烧煮→湿磨粉碎→加酶(或加入50%的麦夫中,接种曲霉酵母等发酵18小时)→酶解→干燥→粉碎→成品。通过技术上的处理,以及补充营养素,复配等手段,可生产出CP50%以上的代鱼粉蛋白饲料,市场潜力和经济效益均很巨大,我们必须保证的是每一步都合理和科学。
2.2利用食品、轻工、发酵行业的下脚料生产菌体蛋白饲料
这些行业是以粮食与农副产品为主要原料的加工行业,年消耗粮食2000多万吨,(占我国玉米产量的30%),年消耗农副产品4000多万吨,总计6000多万吨。食品与发酵行业尽管大都采用玉米、薯干、麦子、大米等作为原料,但并不是利用这些原料的全部,而只是利用这些原料的淀粉部分(大多情况下是如此)其它部分(如蛋白,脂肪,纤维,矿物质等)则限于技术、投资、管理等原因基本上没有加以利用。如果按粮食原料淀粉含量70%计,按生产工艺的淀粉利用率为40%计,则整个行业全年有近1000多万吨原料转化为废渣水,其中又有相当一部分随洗涤水、冷却水等排入环境中,既浪费资源,又严重污染环境,破坏生态。
表五为1988年全国食品与发酵行业产量,企业个数,年排渣,糟,水量的统计表。
表5:1988年食品发酵行业主要废渣水排放量(万吨)
行业
年产量
企业(个)
废渣水
吨产品排放量
年排渣量
年渣水总量
粮薯酒精
糖蜜酒精
淀粉
味精
白酒
柠檬酸
淀粉渣
啤酒
饮料
制糖
罐头
85
25
120
18
460
7
55
650
315
484
220
400
510
293
200
40000
40
200
700
2000
510
2270
酒精糟
酒精糟
黄浆
浸泡水
大米渣
废母液
白酒糟
薯干渣
废母液
浆渣
麦糟
废酵母
甜菜粕
甜菜泥
果渣
14T
14T
10T
4T
3T
25T
3T
3T
10T
0.3T
0.2T
0.02T
6T
1T
--
1200
350
1200
500
54
450
1380
21
70
17
130
13
6000
100
78
8500
2500
12000
500
54
10000
46000
21
3500
1700
13000
13
31540
48400
7880
合计
6163
207488
注:年排废渣水总量指;废液,废渣,冲洗水,冷却水,洗涤水等
从表中可知:这些废渣水年总排放量达到20亿吨,其中主要渣液达0.6亿吨,分析表明,粮薯酒精糟、糖蜜酒精糟、黄浆、大米渣、废酵母、玉米浆渣、麦糟、果渣等均含有丰富的蛋白质、氨基酸、维生素、糖类和多种微量元素,是理想的饲料源,也可为微生物增埴提供必要的营养物质。以玉米酒精行业为例,理论上投料3吨玉米,可产酒精、蛋白饲料、二氧化碳各一吨,国外采用先进的生产工艺已实实现主副产品总量2.7吨的水平,损失率仅为10%,而我国大部分厂只能得到主副产品总量1.3吨,损失率高达57%!可见开发的潜力非常大。
2.2.1 固态发酵开发途径:
常采用的方法是,加入麦夫、棉菜籽粕、次粉,玉米蛋白粉及其它非常规饲料进行废渣水的吸附,适度灭菌之后,接种囊拟内孢霉酵母菌,或米曲霉、黑曲霉、白地霉、产黄青霉、假丝酵母、光合细菌、乳酸菌等进行发酵,烘干而制成蛋白饲料。
这种方法尤其适合于那些含有大量非蛋白氮如硫酸铵、尿素的废渣水的处理。典型的有味精废母液、酶制剂废水、柠檬酸废母液等。因为这些非蛋白氮的存在,使它难以作为单胃动物的饲料而使用。而通过固态发酵处理,则可将其中的70的非蛋白氮转化为真蛋白的菌体蛋白。工艺如下:
2.2.2 烘干处理途径:
对于有些废渣可直接烘干作为饲料使用,如啤酒酵母泥、麦根、麦糟、酒精糟等
2.2.3 液体深层发酵处理:
例如:江苏如东生物化工厂、常州味精厂、烟台味精厂、浙江味精厂、利用味精废水生产味精酵母,总生产能力达到6500吨/年,1991年共生产3150吨,粗蛋白达60%,产品售价在2400元/吨---2800元/吨之间(1991年)
福建云肖糖厂、广西南宁糖厂、浙江新市酒厂等利用酒精废水生产菌体蛋白,总能力已达到6900吨/年,1991年生产3220吨,粗蛋白达45—50%,售价在2200—2400元/吨。(91年)
广东江门甘蔗化工厂也建成万吨级饲料酵母深层发酵生产基地,以糖蜜、酒精废液为原料生产SCP;河南南阳酒精厂、山东临沂酒厂、浙江德清饲料酵母厂等则利用薯干淀粉制酒精废液生产SCP;南宁糖厂利用丙酮丁醇废液生产SCP;江苏靖江食品工业总公司利用柠檬酸废液生产SCP;辽宁淡水厂产研究所利用淀粉废液(黄浆水)生产SCP;四川宜宾饲料公司、兰州牧工商联合总公司利用食品加工厂废液深层发酵生产SCP。
这些都是液体深层发酵生产酵母的典型例子,其特点是机械化程度高,产品细胞含量大,杂菌含量少,但也存在高耗能,高投资,原料不易收集,或存在固形物浓度太低,不浓缩和回收,设备腐蚀快,动力消耗大,产品生物活性物质相对偏低,核酸含量高等缺点。尽管如此,利用深层发酵处理废液,以及从草炭,人造腐殖酸盐,稻壳及稻草等纤维原料水解液制取酵母,仍然是今后的发展方向。因为它能有效地、充分地再生资源,并减轻食品与发酵工业废水的环境污染。
典型的液本深层发酵工艺路线如下:(以酒清废水为例)将糟液分离得到的废糟水,添加营养盐和适当的玉米浆(作为生长素源),调节PH值到4.4左右,接种假丝酵母等多株菌种混合发酵,再经分离干燥而得成品:(见下图):
2.3 利用自养微生物生产菌体蛋白:
二氧化碳是一种可以自给,又能无限循环利用的碳源,因此利用二氧化碳的自养微生物受到各国的重视;况且,自养微生物在同化二氧化碳的同时,很多菌种还释放出氧气,这无疑改善了大气环境,具有重要的环保意义。目前用得最多的是藻类和光合细菌。
自养微生物分光合微生物和化能合成微生物。光合微生物中具有叶绿素的藻类和具有相似色素的光合细菌,可用作食品的有属于单细胞真核生物的绿藻中的小球藻和栅列藻,以及属于原核生物的蓝藻中的一种大型螺旋藻spinrulina。但这些藻类大量迅速培养时,由于要受光照而处于光照的开放环境中,如何高效地供给二氧化碳及保持光能都是有待解决的问题,且占地面积也很大。太阳能尽管很大,但由于昼夜、季节、气候的变化以及大气层的阻挡过滤,真正到达地面的能量很弱,按照每千焦耳能量藻体收率只相当于5mg左右,则单位土地的面积的产量不大。实际上只利用二氧化碳为单一碳源生产SCP的产量只占一部分,包括螺旋藻在内的SCP还必须添加醋酸进行培养,价格较高,一般作为动物的生长促进剂和保健食品。
光合细菌适合于处理含氮量很高的废水,可考虑培养红色假单胞菌Rhodopseudomonas、红螺菌Rhodospirillum等红色非硫细菌作为饲料和饵料,并可净化鱼塘水质,减少换水次数,增加鱼类抗病能力,减少鱼死亡率,促进鱼体生长整齐,使鱼产品颜色鲜艳自然。国内的河北沧州厚德生物技术研究所和上海交大生物技术研究所,和江西省宜春高新技术专利产品开发中心(本中心)均开发有该产品。近年来由于水体污染,环境恶化等原因,造成水产养殖中因污染引起的病毒病、流行病、暴发病等时有发生,给养殖户造成巨大的损失。而采用化学水体消毒法如石灰、高锰酸钾、漂白粉、次氯酸钙、二氧化氯等又常常利少弊多,效果不太理想。利用经特殊培养的光合细菌培养液来防治水体污染,则是近年来一种有益的尝试,在许多地方获得了成功。光合细菌作用于水体,能刺激鱼虾的生长发育,提高产卵、孵化成活率,并能预防和治疗疾病,提高非特异性免疫功能,抑制病菌生长和侵入鱼体。如红色非硫假单胞菌PSB可降低水体氨氮含量和供氢体有机物含量,将有毒的硫化物转化为硫化单体,能将鱼虾排泄物、残饵充分利用,减少换水,投入产出比达到1:40以上。表6为自养微生物:
表6:能固定二氧化碳的主要自养微生物
光合微生物类
化能合成微生物类
藻类
绿藻:小球藻Chlorella
栅列绿藻Sceneaesmus
蓝藻:鱼腥蓝藻Anabaena
念球蓝藻Nostoc
螺旋蓝藻Spinlina
硝化细菌类
氨氧化菌Nitrosomonas
亚硝酸氧化菌Nitrobacter
硫氧化菌Thiobacter
铁氧化菌Thio ferrooxidans
光合细菌类
红硫细菌Cromatium
绿硫细菌Chlorobium
红色非硫细菌:
红螺菌Rhodospirillum
红假单胞菌Rhodopseudomonas
氢细菌
假单胞菌产碱杆菌,诺卡氏菌

甲烷细菌
杆菌,球菌等
一氧化碳
氧化菌
氧化碳杆菌
2.4 从石油类资源中生产菌体蛋白
1963年法国BP公司的A.champagnat等发表了从粗柴油中中制造酵母的方法,其后,各国相继建立了以石油化工产品如正烷烃、甲醇、乙醇等为原料,用酵母和细菌制造蛋白质的方法。
表7:由石化原料开发的微生物菌体蛋白产品
企业名称
原料
微生物种类
规模(吨/年)
英国BP公司、格兰Crangemouth
正烷烃
解脂假丝酵母
4000
英国ICI帝国化工公司Billingham
正烷烃
解脂假丝酵母
100000
意大利BP公司Sarroch
甲醇
甲基氧嗜甲基菌
60000
美国Standand oil Amoco.Hutchinsom
乙醇
产朊假丝酵母
4500
罗马尼亚oniproto.Curtea.Arges
正烷烃
石蜡假丝酵母
60000
日本兴人。大分县
醋酸
产朊假丝酵母
日本三菱瓦斯化学,新泻县
甲醇
毕赤氏酵母,甲烷甲基单胞菌
500
 英国石油公司最早建成年产4000吨的工厂,并投入生产,罗马尼亚引进日本墨水化学工业株式会社的技术,建成年产60000吨工厂,1980年投产,前苏联在这方面投入很大,年产量要达到近100万吨,这些研究与生产均是在世界蛋白质资源严重短缺时达到高潮的,但随着石油这类不可再生资源的日益减少,人们将把注意力逐步转移到可再生资源的开发与巨大的海洋资源的开发中来。
3、利用微生物菌体生产SCP有关问题
3.1 条件
为使利用微生物生产SCP实用化,必须满足以下条件:3.1.1 原料廉价,并且充足而易于收集。
3.1.2生长速度和生长效率高,菌体收率高。
3.1.3易培养,最好是较为粗放,可连续生产。
3.1.4菌体容易收集,即下游分离工艺简单。
3.1.5废水问题少,不产生二次污染。
3.1.6 产品蛋白质含量高,氨基酸组成合理,生物活性物质含量多等。
3.1.7 符合国情和市场需求。
3.1.8 无病原性和毒性。
关于原料的问题,我们在前面已经进行了系统的阐述,其它问题则基本上为技术处理上的问题,我们分别进行阐述和论述。
3.2 生产效率
生产效率是指单位时间内,单位容积中的菌体产量,对于固态发酵而言,则是指单位时间内的单位菌体转化率。
dx/dt=ux  式中:dx/dt-----生长速度  (kg/m3.h)
u-----比生长速率 (/h)  x----某一时刻的菌体浓度  (kg/m3)
一般说来,细菌的比生长速率较大,酵母次之,霉菌最小,但霉菌也有比生长速率较大的。酵母菌的生长速度随着原料的不同,而在2---4kg/m3.h变动,氢细菌生长速度为3.14kg/m3.h,而植物有机物生产效率最高的热带雨林和甘蔗的生长速度是500kg/m3.年左右,在热带地区培养光合成藻类的生长速度也大至与此相同,可见与此相比,微生物的生产效率可谓巨大,且不受季节,气候和地区所限制,可实现工业化生产。
在固体发酵中,基料是固态,不流动,物质交换少,细胞与基料的接触面少,沟通也少,故而会防碍生长效率的提高,(它仅靠菌丝的蔓廷生长),所以较高的接种量是必需的,可增加微生物细胞的发源点,大大缩短发酵周期,如酵母菌的接种量要达到1%,霉菌孢子的接种量也至少0.1%(而若是液体发酵则只需要0 .01%)。
3.3 菌体收率
固体发酵中的菌体转化率可以从产品检测到的每克干物质所含的细胞数,再通过计算而得,计算公式如下;
固态发酵菌体转化率(%)=(A/116 + B/650)× D × 100%  kg/kg
式中:A----镜检中的大酵母细胞(如常用于固态发酵的扣囊拟内孢霉或皮状丝孢酵母)亿个/克
B----镜检中的小酵母细胞(如常用的辅助菌种掷孢酵母,红发夫酵母,铁红酵母,产朊假丝酵母,解脂酵母,红酵母等)亿个/克。
D-----一种系数,在发酵后期,有很多细胞发生自溶,或引进自溶工艺以提高产品营养价值等,这样就使检测到的表观细胞数信偏低,根据笔者多年的试验结果,D值在1.2---1.9之间,尤其对于使用了曲霉菌的固态发酵来说,由于其菌丝无法计数,故而D值往往在1.5以上。
116-----为扣囊拟内孢霉酵母菌每克纯细胞中的细胞数,亿个/克。
650----为辅助酵母菌每克纯酵母中的细胞数,亿个/克。
对于固态发酵来说,菌体转化率即为成品中,菌体占产品总量的百分比。一般在10—40%之间,转化率越高,产品得率就越少,这是因为在转化过程中,消耗了基料中的碳水化合物作为能源,一部分碳源变成二氧化碳挥发掉了,而产品是菌体与培养基残基的总和。当然,转化率越高,产品的生物活性也越高,营养价值越丰富,粗蛋白含量也越高。
上述公式是事后检验方法,可用来试验哪些原料的碳源适合于用来固态发酵。
菌体产量的预期值,则一般按与碳源基质完全氧化所得的能量ATP的摩尔数成正比的方法估算。通过多次试验得知,以1kg的葡萄糖为碳源基质预期的菌体产量是0.5kg,而由1mol的葡萄糖完全氧化可生成38mol的ATP(前提条件是充分供氧及其它元素营养条件具备的情况下)。根据这一前提,若能推断出从1mol其它基质生成的ATP的摩尔数的话,即可以计算出该基质的菌体产量预期值,(见表8)
表8:由不同的碳源获得ATP的产量及菌体预期收率
基质
ATP产量
菌体产量(g/g)
Mol/mol
化为g/g
葡萄糖
正十二烷
乙醇
乙酸
甲醇(细菌)
甲醇(酵母)
甲烷
氢(细菌)
38
99
17
11
9
6
6
2—3
0.21
0.582
0.37
0.18
0.28
0.19
0.37
1.0—1.5
0.5
1.385
0.88
0.43
0.67
0.45
0.88
2.37—3.55
例如:正烷烃完全氧化,由1mol正十二烷烃可生成99molATP,则菌体产量预期值应为1.385kg/kg。
所以在发酵过程中,碳源的主要作用是提供能量,部分作为菌体的细胞碳骨架,其它物质(如氨基酸,维生素,无机盐等)则主要用来合成RNA,DNA,蛋白质,酶,脂质,多糖,激素等,进而进一步构成核糖体,线粒体,细胞膜------等细胞器,再进一步合成细胞。而能量则来自于碳源的氧化磷酸化(好氧时),或基质水平磷酸化(缺氧时),碳源在好氧时主要变成二氧化碳,而在厌氧时主要生成乳酸、乙醇、醋酸等。一般来讲,好氧固态发酵物质消耗大,也即这个原因,但菌体转化率比厌氧时要高得多,实践中要根据不同的应用目的,来选择不同的发酵方式。
国内固态发酵生产SCP大多为高蛋白基料水平上的固态发酵,基质中作为能源物质的碳水化合物较少,发酵一定时间后,微生物便会分解基质中的蛋白质和氨基酸,以利用其中的碳骨架作为能源,同时脱氢产生刺鼻的氨气,这是十分不经济的,也是失败的。故而必须严格控制发酵时间,使之在30小时之内结束发酵,或适当提高基料中的碳水化合物含量。发酵目的应以适度水解基料中蛋白质,以提高其消化率,并产生生物活性物质为主,而追求高的菌体转化率是不现实的。
3.4 生产上的问题
对于液体深层发酵来讲,机械化程度较高,操作简单,技术也很成熟,生产上一般没有问题,当然其最大的壁垒是投资巨大。
对于固态发酵来讲,则存在以下问题:
3.4.1 单位面积产量小。即占地面积大,而料厚又受到限制,太厚则通风散热均成问题。
3.4.2 传质问题:经常出现的情况是,在实验室不成问题的通风散热,菌丝扩大问题,一到大生产中,却往往造成烧料,产氨味等传质问题,尽管加装了搅拌设备也往往防不胜防。
最直接的解决方法是,用大接种量,增加发菌点,然后控制在20小时之内结束发酵,即在问题尚未出现之前就结束发酵。
3.4.3 检测问题:在液体深层发酵法中,可以用电子计算机进行控制培养。但在固态发酵中,关于PH值、温度、基质含水量、菌体增殖量等在培养过程中的变化检测,几乎是不可能的。
我们常常见到这样的情况:插入料中的温度计显示是35度,但实际上已经超过了40度,因为风机一开,温度值马上上升到了40度以上,这就是因为传质不均的结果。
3.4.4 劳动强度大,如何在固态发酵中引进自动化的设施将是今后要研究的课题。
3.4.5 当然固态发酵也具有液体深层发酵所没有的优势。只要选择好适应的菌种,固体发酵具有无比的发展潜力,尤其是在高附加值产品的开发上,许多单位已能用固态发酵生产微生态制剂、植酸酶、复合酶等,而且几乎只需投入几万元资金便可生产经营。
另外,在工艺上固态发酵需要的供氧量相对要少得多,这是因为固体微粒之间的空隙较多,固体比面积大,与固体微粒接触的空气多等。但必须及时排除空隙中的二氧化碳和热量,通过鼓风补充新鲜的空气。总的来说,固态发酵的成本、能耗要小得多。
3.5 微生物菌体蛋白SCP的安全问题。
在考虑微生物菌体蛋白时,安全性是至关重要的。致癌性芳香化合物(石化产品中)、重金属、真菌毒素、病原性菌、感染性、遗传性等。均应经过长期而充分的考虑。联合国蛋白质咨询小组PAG鉴于这一问题的重要性,提出了有关指导原则,对开发SCP方针提出了建议。
在欧洲以国立机构为中心的对微生物蛋白质的毒性进行了详细的试验,并已转向实用化。在日本,1970年12月厚生省食品卫生调查会石油酵母特别部会发表了36条22款的安全性标准。我国对SCP未作特别的检验标准,只是在需要时对技术进行鉴定时,才做“三致实验”,但对食用蛋白新产品,却有着严格的标准。
通过动物试验,现已确认,在微生物蛋白中含有较多的核酸、嘌呤碱基、正烷烃酵母中含有奇数碳原子的脂肪酸及残留的烷烃等,在生理学和病理学方面均无问题。
对于固态发酵生产的蛋白饲料来说,产品经小试出来,应做以下的毒性毒理实验,方可上市:
3.5.1 产品的急性和非急性毒性试验。
3.5.2 微核试验。
3.5.3 Ames试验。
3.5.4 Sce试验。
3.5.5 黄曲霉毒性化验(黄曲霉毒素B1小于5ppm)
3.5.6 产品用Oxoid CM145葡萄球菌110号培养基测定致病性葡萄球菌;用Oxoid CM133/164去氧胆酸钠琼脂测大肠杆菌;用Oxoid CM329改良煌绿琼脂测沙门氏菌;用焦性没食子酸氢氧化钠培养法测定厌氧菌。
3.5.7 有毒微量元素测定。
3.5.8 薄层分析法分析杂色曲霉素,3、4-苯并芘,亚硝胺,比色法分析曲酸。
在确认各项指标安全后,进行动物喂养试验,以进行胴体解剖,饲料报酬,日增重,抗病性,蛋白消化率,代谢能,消化能等测定。
4    固体发酵特点与固体发酵微生物
固态发酵饲料在我国饲料工业中占据了一定的比重。年规模已经达到几十万吨以上,而正如前所述,仅利用我国食品与发酵行业的废渣糟,可产生蛋白饲料近1000万吨,再加上可资利用的各种农副产品及下脚料,可利用资源非常丰富。加上近年来该行业的发展,已积累了丰富的技术与经营经验,故而发展潜力巨大,有可能成为我国饲料与环保工业中的一支新军。
4.1 固态发酵的微生物生理特点。
在自然界中,微生物生长除了必须有营养物质供应外,还必须具备相应的物理化学环境,例如这些营养物质还必须有与微生物细胞内渗透压相平衡的物理化学状态,才能使微生物开始增殖。例如在液体培养中,在含有高浓度的食盐(或蔗糖)的培养基中,由于细胞外部的高渗透压,引起质壁分离,随着细胞内物质的向外泄漏,微生物便会死亡或受到抑制,盐渍罐头和糖水罐头不易变质,便是这个道理。根据同样的原理,在固体基质的表面,并不是所有的微生物都能生长,因为固态发酵水分少,微粒表面的营养物和营养盐浓度是很高的,只有那些具有一定的耐高渗透压性能的微生物才能正常生长,例如霉菌、酵母、及放线菌中的一些菌株。
一般来说,霉菌和扣囊拟内孢霉酵母,皮状丝孢酵母等可以在含有适度水分的固体基质表面生长良好,但许多细菌却由于细胞内渗透压没有霉菌那么高,而仅能在含有适度营养物质的液体中生长,(部分耐高渗的球菌除外)。事实上,固体发酵也大多是用霉菌和酵母来发酵的。
固态发酵即是耐高渗透压环境中的发酵,一些典型的例子是制酒行业中的制曲,酱油行业中的制曲,以及豆豉,酵母饲料等。目的分别以获得高量的淀粉酶活性、蛋白酶活性、酵母细胞数及丰富的生物活性物质为主。霉菌和酵母等能在比较干涸的基质表面生长,而细菌等杂菌的污染度很小,固体培养就是这样一种巧妙的培养方法。
4.2固态发酵的形式
4.2.1静置培养法
把含有水分的固体培养基(如谷物原料及农产品加工副产物)置于容器中,如500ml~1000ml三角瓶中(装干料50g,含水40g,共90g,),或300ⅹ200医用搪瓷托盘中(装干料200g,含水160g,共360g),厚度30mm左右,接种霉菌或酵母静置培养,氧的供给、二氧化碳和热量的散失依靠自然对流的方式进行,对某些菌种的发酵(黑曲霉)则辅以一两次间断的摇动、拌翻料等。
这种方式主要用于2、3、4级种子的制作,工业上多用多层铝制浅盘(如60cmⅹ150cmⅹ25cm)交叉叠起或上架培养,缺点是单位产量劳动强度大,优点是质量优异且稳定。

4.2.2通风发酵池培养法
通风发酵池有全开放的,也有全封闭式的(类似于密封制曲机),目前趋向于向后者发展,不仅劳动强度小,且劳动环境也大有改善,控制成本低等。
发酵池一般为长方形的砖石水泥结构,长约6m~10m,宽约1.5m~2m,半地下式,高出地面0.4m~0.5m,池底导风板倾斜度8°~10°,曲池设假底,假底材料用篦子、竹席,可以取出,以便清洗池底。(见图1)罩子可用钢板、玻璃或轻质材料制作,可一直顶到天花板,设出风口。风机选用中压风机,风压100mmH2O~300mmH2O,风道长1m~2.7m,倾斜度7°~10°,风量掌握在曲线池装料总量的4~5倍体积,铺料厚度20cm~30cm.。
通风发酵池是目前应用最广的一种方式,投资少,效果好,也利于实现机构化操作,如图2。

对于发酵周期为16h-24h的高蛋白基料水平上的发酵来讲,无需搅拌翻料,长白长透即出料,对于益生素、酶制剂生产则必须配置搅拌装置。
4.2.3旋转培养
旋转转鼓式发酵罐,例如天津东海实验厂设计的发酵机,该装置便于置换空气和散热,旋转没有必要连续地进行,在激烈旋转时还会妨害菌丝的发育。本法单位产量投资大,自动化程度高;但本法的大规模放大,在基本参数方面尚欠充分。
4.2.4圆盘制曲机
是一种机械化程度高的设备,投资也很巨大,厂家有南京通用建筑机械厂,河北秦皇岛山海关酿造机械厂,广东轻工机械设计研究所。
如PYZ-600型,回转曲床直径6000mm,曲床有效面积27.62m,每批混合原料在投料量约3000kg,料层厚度250mm~270mm,装机容量18.5KW,曲床转速0.137r·p·m,主机尺寸(长ⅹ宽ⅹ高)9mⅹ7mⅹ5m,占地面积70m,厂房高度要求6m以上。为拼装式结构体系,无需土建工程,便于运输、吊装和现场安装等,缺点是投资巨大,许多发酵厂家多自行设计,自行制造。目前该设备仅广泛用于酱油、食醋、溜曲、酶制剂等行业。
4.2.5其它发酵方法
例如大棚内搭竹架用竹扁上架发酵法、蜂窝煤发酵法、地面发酵法、厌氧池发酵法等。
在能够有效地提升基饲用营养价值、增加生物活性、以及能达到  期目的的前提下,能采用厌氧发酵的,则尽量采用厌氧发酵。这种方法物质损耗少,劳动强度小,投资极少,工艺简单,缺点是不稳定,生物活性不高,须防止烧料,以及应用范围很窄等。
4.3固态发酵常用微生物
4.3.1酵母属
酵母菌是一群单细胞微生物,属真菌类,在发酵饲料中是高蛋白和生物活性物质的主要载体,也是人类应用较早的一类微生物。酵母菌也有呈丝状的假菌丝体Paseudomycellium,其细胞大小通常为1um~5um、长度5um~30um,形状有卵形、球形、柠檬形、丝状形、腊肠形及各种子囊孢子形状,宜用100倍以上显微镜观察。
值得指出的是,酵母菌的细胞壁在动物肠胃中较难被消化,阻止了胞内营养物质的消化吸收,使得酵母作为饲料存在一个细胞壁抗营养因子,尽管酵母的营养十分丰富。酵母细胞壁主要由甘露聚糖(31%),葡聚糖(29%)、蛋白质(13%)、类脂质(8.5%)所组成,Moor和Muhlethaler 报道其厚度在70mm,随菌龄的增加而增加。解决这一抗营养因子的方法,一是破碎细胞,但往往需要较大动力的设备及耗能大等而不现实。二是在培养液中加入一些表面活性剂,如天然的茶枯饼(2%)、十二烷硫酸钠(0.1%)、TritonX-100(0.4%),可改善细胞内外通透性,使消化酶及其它生物活性物质尽量释放出来,对某些物质而言,比机械破碎法还有效。三是控制一定的发酵时间,适时出料,酵母细胞壁还较幼嫩且薄,易于消化。四是自溶,微生物代谢过程中,大多能产生一种能水解细胞壁上聚合物结构的酶,以便使细胞能够伸长生长(如酵母出芽繁殖的芽痕便是溶酶作用的结果)。在出料前,可通过改变微生物的温湿环境,或加入促溶剂,以诱发产生过剩的这种酶或激发产生其它的自溶酶,达到自溶的目的。
扣囊拟内孢霉酵母是一种非常优秀的固态发酵酵母菌种,(我中心有保藏菌种供应),其特点是可以在固体基质表面高密度堆积生长,例如在纯麦夫培养基上可以达到80亿/克的细胞密度,而该菌种的纯细胞每克含细胞数为116亿个/克,说明它在麦夫培养基上的菌体转化率达到了66.7%!相比之下,酒精酵母在麦夫培养基上仅能生长达到3—6亿个/克的密度,而酒精酵母的纯干细胞密度为650亿个/克,菌体转化率还不到1%!扣囊拟内孢霉酵母菌具有很强的淀粉酶和蛋白酶能力,能有效地利用淀粉和蛋白源作为能源和氮源,合成菌体。而其它如酒精酵母,则需要依靠其它菌种(如酒曲生产中的根霉菌)的糖化酶来帮助它分解淀粉,产生葡萄糖来生长和产酒,故而酒精酵母不适合于固态发酵。
皮状丝孢酵母也具有淀粉和蛋白分解能力,也能高密度堆积生长,形成浓厚的菌苔,故而它也适合于作为固态发酵菌种。
另外如产朊假丝酵母Candia utilis、铁红假丝酵母Candida pulcherrima、掷孢酵母Spororbolomyces roseus、红酵母属Rhodotorula Harrisom等,则往往作为辅助菌种,在固态发酵中用量较少,生长量也有限,但它们为主发酵菌提供一些特异的生长因子,有互为促进的作用,且在一定程度上改善产品的生物学效价。
4.3.2 霉菌
大多数霉菌被用于固态发酵,例如米曲霉Aspergillus oryzae用于固态发酵制酱曲和蛋白酶,黑曲霉中如盛泡曲霉A.awamori则被用于作糖化曲,青霉中的娄地青霉Penicillium rogueforti、沙门柏干酪青霉P.Camemberti用于干酪生产,产黄青霉P.chrysogenum用来生产青霉素,根霉菌作为小曲白酒中的糖化曲。
饲料工业中常用霉菌作为辅助菌以分解蛋白和淀粉,曲霉也常用来固态发酵生产各种酶制剂。它们的酶系发达,用其生产的复合酶中含有纤维素酶、植酸酶、果胶酶、葡聚糖酶、甘露聚糖酶等等,而这些物质常常是农副产品中及饲料原料中常见的需要降解的抗营养因子。
霉菌多属产孢子繁殖体,如黑曲霉产黑色孢子,米曲霉产黄绿色孢子,孢子容易收集,接种量少,使用方便,因而在固态发酵中广泛应用。
黑曲霉尤其是产生分解饲料中抗营养因子的酶活的黑曲霉,常用来生产高挡饲用酶制剂,也作为酵母饲料的辅助菌,本中心有菌种保藏。
米曲霉的特点是蛋白酶活力高,可达6000u/g,同时它尤其适合于在高蛋白含量的基质上生长,故而常用于豆制品的生产。米曲霉经诱变筛选后常作为棉籽饼和菜籽饼粉的发酵,脱毒菌种,并可增加营养价值,本中心有菌种保藏。
白地霉Geotrichum candidum link也常用于发酵饲料,许多文献把白地霉放在酵母属类。显微镜下单个细胞呈圆柱形,它的生理适应性强,生长速度快,耐高渗透压,菌体中含有丰富的维生素和蛋白营养素,且比扣囊拟内孢霉酵母还耐高渗和适应性强。但最大的缺点是不能象扣囊拟内孢霉酵母那样高密度堆积生长,例如,在纯麦夫培养基上培养成熟后,它只能达到10亿/克的密度,菌体转化率只有3%左右,远低于扣囊拟内孢霉的66.7%,同时抗杂菌能力(形成生长优势的能力)也不如扣囊拟内孢霉。
4.3.3 细菌
主要是指乳酸杆菌类,且主要用于厌氧发酵,如青贮饲料,微贮饲料,菜粕厌氧发酵脱毒等。另外,与芽孢杆菌、粪链球菌、双歧菌等一样,可作为微生态制剂使用。
5 微生物在饲料工业中的其它应用领域
5.1 益生素 Probiotics
类似的名称有微生态制剂Micobial ecologicalagents和微生物生长促进剂Microbial growth Promotirg。是一些活的微生物培养物。
益生素的诞生起因于抗菌素广泛应用的副作用,如引起动物的内源性感染和二重感染,破坏了肠道微生物平衡;产生了耐药性病菌,使抗生素的应用越来越不理想;抗生素长期使用的结果可使畜禽细胞免疫功能下降;抗菌素在畜禽产品中的残留问题等。而益生素主要以恢复微生态平衡入手,利用微生物的各种有益机制达到治病促长的目的和效果,不存在上述缺陷,因而有专家预言:“光辉的抗生素时代后,将是一个崭新的微生态制剂时代。
目前主要应用于益生素的菌种有芽孢杆菌属、乳酸杆菌属(以嗜酸乳酸杆菌为主),粪链球菌属及酵母等,一些产品还含有光合细菌、双歧杆菌、曲霉菌等。
益生素的作用原理,一是建立肠道有效微生物种群优势,抑制有害细菌种群;二是益生素中孢子在肠道中萌发时,大量消耗肠道内的氧气,造成肠道中的厌氧环境,改善了微生态环境;三是与病菌竞争性地吸附到肠细胞上;四是在肠道中产生乳酸、丙酸、乙酸等使空肠内容物PH下降;五是防止有害物质氨和胺的产生;六是产生过氧化氢,杀灭某些潜在的病菌;七是在肠道中代谢产生消化酶、维生素、菌蛋白等;Savage.C(1977)估计,盲肠中的微生物活动可提供动物营养需要的25---35%。八是产生抗生素类物质,如嗜酸菌素、乳糖菌素等;九是产生非特异性免疫调节因子。
Duthenson研究表明,饲喂益生素在抗肉牛集约化生产的逆境影响下,效果十分明显,在舍饲条件下,平均日增重可提高13.2%,饲料转化率提高6.3%,发病率下降27.7%。在添加DM423芽孢杆菌粉剂0.05%条件下,据报道可显著降低肉鸡死亡率,雏鸡增重提高13%。另据Grawford报道,乳酸杆菌可提高产蛋率,降低饲料消耗。
国内这类产品有强力益生素(广州产)、调痢生(四川省)、复合菌剂、和DM423(南京)等。生产工艺可为液体发酵工艺:细菌生长发酵罐→回收系统→微胶囊化→硬化系统→回收系统→冻干→成品。也可为固态发酵工艺(国内几乎为此):斜面菌种→一级种子→二级种子→生产发酵→加载体→干燥→粉碎→成品。
5.2  饲用酶制剂 Feeding enzyme
利用曲霉菌固态发酵生产蛋白酶和淀粉酶的工艺已经很成熟,这类产品主要应用于消化系统尚不发达的幼小动物,对于成年动物则几乎没有作用,因为其充足的唾液、胃液、及胰液分泌已能满足对这些酶的需要,市场竞争也很剧烈。
目前研究的热点和普遍关注的问题是非消化酶类产品如:木聚糖酶、戊聚糖酶、β-葡聚糖酶、甘露聚糖酶、植酸酶、纤维素酶等。因为动物本身不产生这些酶,而这些酶各自的底物如木聚糖,又常常是常规饲料中重要的抗营养因子,是造成消化不良、拉稀、污染禽蛋、降低饲料报酬的重要原因之一。
目前已知玉米中含木聚糖酶4.5%左右、植酸1%左右;小麦中含β-葡聚糖1%、木聚糖6%、戊聚糖5—8%、植酸1.16%;大麦中含β-葡聚糖3—6%、木聚糖6—7%、植酸1.17%;黑麦中含戊聚糖10%、植酸1.3%;豆饼中含果胶14%、植酸1.5%;燕麦中含β-葡聚糖3—6%、植酸1.5%。这些非淀粉多糖都可部分溶于水,在消化道中形成凝胶状,使消化道内容物具有较强的粘性,因而影响了营养物质的吸收,并导致不同程度的拉稀,最终影响畜禽的生长和饲料报酬。更为严重的是,它们多为植物细胞壁的组成成份,因而它们的存在会影响植物细胞内容物的消化吸收。另一方面,对于玉米来讲,它在我国饲料配方中的使用量达到了50—60%,因而消除木聚糖的抗营养影响显得至关重要。饲料中添加β-葡聚糖酶则可提高大麦的用量,而降低成本,添加戊聚糖酶则可提高小麦、黑麦、黑小麦等用量,而降低饲料成本,并相应地改善和提高饲料营养。若能生产出所有的这些抗营养因子的分解的酶制剂并组成复合酶,显然具有极大的竞争力和开发市场潜力。
目前国内已经开发出采用较简单的固态发酵工艺生产这些酶的工艺技术。如生产5万单位的植酸酶,生产5万单位的木聚糖酶,生产5万单位的β-葡聚糖酶,生产5万单位的戊聚糖酶等。复合后不仅可以显著提高改善玉米加豆粕型日粮的饲料转化率,而且可以加大小麦、大麦、黑麦、燕麦、荞麦、米糠、次粉等用量,既降低饲料成本又改善营养价值。
芬兰ALKO生物技术公司研究表明,饲料中添加200ppm的β-葡聚糖酶,可有效地提高肉鸡生长速度达10%,饲料报酬提高6%。Kemin公司的非淀粉多糖酶Kemzyme,添加500ppm于蛋鸡饲料中,产蛋量可提高7%以上。Gruham1983在以大麦、细麦夫为主的饲料中添加β-葡聚糖酶和戊聚糖酶,显著提高回肠干物质消化率。加拿大沙斯喀彻温大学在以大麦为基础的肉鸡日粮中添加这些酶,肉鸡日平均增重提高17%,饲料报酬提高10%。Collier Hardy1986在早期断奶仔猪日粮中添加以中性蛋白酶、淀粉酶、β-葡聚糖酶、木聚糖酶等的多酶制剂,日增重和饲料报酬都得到了显著的提高,在生长育肥猪中,类似的效果也很显著。
这些酶的一个共同特点是添加量小,大多为200-300克/吨,效果显著,投资较小,是今后的发展方向。
6   其它
在饲料工业的微生物应用领域中,采用人工瘤胃技术利用纤维素是国际上的一个重要研究课题。我们知道,反刍动物牛有四胃,瘤胃、网胃、绊胃、真胃等,内含有大量的细菌(500亿/克)和纤毛虫,形成一个独特的微生态生物链,逐级将纤维素物质消化利用,形成能够被肠胃吸收消化的营养物质(纤毛虫蛋白、细菌菌体蛋白、氨基酸、维生素等),最终合成牛肉蛋白。若能人工制造这一微生态环境,将纤维原料进行工业化转化,无疑将为人类创造一个巨大的蛋白质资源库。