关于美德的诗歌:为UBOOT添加NANDFLASH驱动

来源:百度文库 编辑:偶看新闻 时间:2024/04/28 00:44:41
http://www.bluemcu.com
1)u-boot版本1.1.3,gcc version 3.3.3 (DENX ELDK 3.1.1 3.3.3-9)

2)在Makefile中加入
my2410_config : unconfig
@./mkconfig $(@:_config=) arm arm920t my2410 NULL s3c24x0
我把我的板子起名叫my2410,可以依自己的喜好修改

3)建立board/my2410目录,拷贝board/smdk2410下的文件到board/my2410目录,将smdk2410.c更名为my2410.c

4)cp include/configs/smdk2410.h include/configs/my2410.h

5)将arm-linux-gcc的目录加入到PATH环境变量中,我的是目录/opt/eldk/usr/bin:/opt/eldk/bin

6)测试编译能否成功:
make my2410_config
make all ARCH=arm
生成u-boot.bin就OK了

7)依照你自己开发板的内存地址分配情况修改board/my2410/memsetup.S文件,我的程序:
#include
#include

#define BWSCON 0x48000000

/* BWSCON */
#define DW8    (0x0)
#define DW16    (0x1)
#define DW32    (0x2)
#define WAIT    (0x1<<2)
#define UBLB    (0x1<<3)

#define B1_BWSCON    (DW32)
#define B2_BWSCON    (DW16)
#define B3_BWSCON    (DW16 + WAIT + UBLB)
#define B4_BWSCON    (DW16)
#define B5_BWSCON    (DW16)
#define B6_BWSCON    (DW32)
#define B7_BWSCON    (DW32)

/* BANK0CON */
#if 0
#define B0_Tacs    0x0 /*  0clk */
#define B0_Tcos    0x0 /*  0clk */
#define B0_Tacc    0x7 /* 14clk */
#define B0_Tcoh    0x0 /*  0clk */
#define B0_Tah    0x0 /*  0clk */
#define B0_Tacp    0x0
#define B0_PMC    0x0 /* normal */
#endif

#define B0_Tacs    0x3 /*  0clk */
#define B0_Tcos    0x3 /*  0clk */
#define B0_Tacc    0x7 /* 14clk */
#define B0_Tcoh    0x3 /*  0clk */
#define B0_Tah    0x3 /*  0clk */
#define B0_Tacp    0x1
#define B0_PMC    0x0 /* normal */

/* BANK1CON */
#if 0
#define B1_Tacs    0x0 /*  0clk */
#define B1_Tcos    0x0 /*  0clk */
#define B1_Tacc    0x7 /* 14clk */
#define B1_Tcoh    0x0 /*  0clk */
#define B1_Tah    0x0 /*  0clk */
#define B1_Tacp    0x0
#define B1_PMC    0x0
#endif

#define B1_Tacs    0x3 /*  0clk */
#define B1_Tcos    0x3 /*  0clk */
#define B1_Tacc    0x7 /* 14clk */
#define B1_Tcoh    0x3 /*  0clk */
#define B1_Tah    0x3 /*  0clk */
#define B1_Tacp    0x3
#define B1_PMC    0x0

#define B2_Tacs    0x0
#define B2_Tcos    0x0
#define B2_Tacc    0x7
#define B2_Tcoh    0x0
#define B2_Tah    0x0
#define B2_Tacp    0x0
#define B2_PMC    0x0

#if 0
#define B3_Tacs    0x0 /*  0clk */
#define B3_Tcos    0x3 /*  4clk */
#define B3_Tacc    0x7 /* 14clk */
#define B3_Tcoh    0x1 /*  1clk */
#define B3_Tah    0x0 /*  0clk */
#define B3_Tacp    0x3     /*  6clk */
#define B3_PMC    0x0 /* normal */
#endif

#define B3_Tacs    0x0 /*  0clk */
#define B3_Tcos    0x0 /*  4clk */
#define B3_Tacc    0x7 /* 14clk */
#define B3_Tcoh    0x0 /*  1clk */
#define B3_Tah    0x0 /*  0clk */
#define B3_Tacp    0x0     /*  6clk */
#define B3_PMC    0x0 /* normal */

#define B4_Tacs    0x0 /*  0clk */
#define B4_Tcos    0x0 /*  0clk */
#define B4_Tacc    0x7 /* 14clk */
#define B4_Tcoh    0x0 /*  0clk */
#define B4_Tah    0x0 /*  0clk */
#define B4_Tacp    0x0
#define B4_PMC    0x0 /* normal */

#define B5_Tacs    0x0 /*  0clk */
#define B5_Tcos    0x0 /*  0clk */
#define B5_Tacc    0x7 /* 14clk */
#define B5_Tcoh    0x0 /*  0clk */
#define B5_Tah    0x0 /*  0clk */
#define B5_Tacp    0x0
#define B5_PMC    0x0 /* normal */

#define B6_MT    0x3 /* SDRAM */
#define B6_Trcd     0x1
#define B6_SCAN    0x1 /* 9bit */

#define B7_MT    0x3 /* SDRAM */
#define B7_Trcd    0x1 /* 3clk */
#define B7_SCAN    0x1 /* 9bit */

/* REFRESH parameter */
#define REFEN    0x1 /* Refresh enable */
#define TREFMD    0x0 /* CBR(CAS before RAS)/Auto refresh */
#define Trp    0x0 /* 2clk */
#define Trc    0x3 /* 7clk */
#define Tchr    0x2 /* 3clk */
#define REFCNT    1113 /* period=15.6us, HCLK=60MHZ, (2048+1-15.6*60) */
/**************************************/

_TEXT_BASE:
.word TEXT_BASE

.globl memsetup
memsetup:
/* MEMORY CONTROL configuration */
/* make r0 relative the current location so that it */
/* reads SMRDATA out of FLASH rather than MEMORY ! */
adr     r0, SMRDATA
/*ldr r1, _TEXT_BASE*/
/*sub r0, r0, r1*/
ldr r1, =BWSCON /* Bus Width Status Controller */
add     r2, r0, #13*4
0:
ldr     r3, [r0], #4
str     r3, [r1], #4
cmp     r2, r0
bne     0b

/* everything is fine now */
mov pc, lr

.ltorg
/* the literal pools origin */

SMRDATA:
    .word (0+(B1_BWSCON<<4)+(B2_BWSCON<<8)+(B3_BWSCON<<12)+(B4_BWSCON<<16)+(B5_BWSCON<<20)+(B6_BWSCON<<24)+(B7_BWSCON<<28))
    .word ((B0_Tacs<<13)+(B0_Tcos<<11)+(B0_Tacc<<8)+(B0_Tcoh<<6)+(B0_Tah<<4)+(B0_Tacp<<2)+(B0_PMC))
    .word ((B1_Tacs<<13)+(B1_Tcos<<11)+(B1_Tacc<<8)+(B1_Tcoh<<6)+(B1_Tah<<4)+(B1_Tacp<<2)+(B1_PMC))
    .word ((B2_Tacs<<13)+(B2_Tcos<<11)+(B2_Tacc<<8)+(B2_Tcoh<<6)+(B2_Tah<<4)+(B2_Tacp<<2)+(B2_PMC))
    .word 0x1f7c/*((B3_Tacs<<13)+(B3_Tcos<<11)+(B3_Tacc<<8)+(B3_Tcoh<<6)+(B3_Tah<<4)+(B3_Tacp<<2)+(B3_PMC))*/
    .word ((B4_Tacs<<13)+(B4_Tcos<<11)+(B4_Tacc<<8)+(B4_Tcoh<<6)+(B4_Tah<<4)+(B4_Tacp<<2)+(B4_PMC) 194234:
引言
      U-Boot是用于初始化目标板硬件,为嵌入式操作系统提供目标板硬件配置信息,完成嵌入式操作系统装载、引导和运行的固件程序。它能够将系统的软硬件紧密衔接在一起。S3C2410是三星公司的一款基于ARM920T核的嵌入式通用处理器。本文将详细介绍U-Boot在S3C2410开发板上的移植与运行。

U-BOOT简介 
      U-Boot支持ARM、 PowerPC等多种架构的处理器,也支持Linux、NetBSD和VxWorks等多种操作系统。它提供启动加载和下载两种工作模式。启动加载模式也称自主模式,一般是将存储在目标板Flash中的内核和文件系统的镜像装载到SDRAM中,整个过程无需用户的介入。在使用嵌入式产品时,一般工作在该模式下。工作在下载模式时,目标板往往受外设(一般是PC机)的控制,从而将外设中调试好的内核和文件系统下载到目标板中去。U-Boot允许用户在这两种工作模式间进行切换。通常目标板启动时,会延时等待一段时间,如果在设定的延时时间范围内,用户没有按键,U-Boot就进入启动加载模式。

    开发板的主要配置包括三星ARM9处理器S3C2410、1个串口和JTAG接口,晶振为12MHz,系统主频为200MHz。另外,开发板上还包括1片4M×16位数据宽度的Flash,地址范围为0x01000000~0x01800000和2片8M×16位数据宽度的SDRAM,地址范围为0x30000000~0x32000000。Flash使用了2410处理器的BANK0单元,由于2410中地址是循环映射的,因而0x01000000 和0x0地址等同。

    在本系统中,U-Boot的主要功能包括:建立和初始化RAM;初始化一个串口;检测机器的体系结构,传递MACH_TYPE_xxx的值(SMDK2410)给内核;建立内核的标记列表(tagged list);调用内核镜像。

U-Boot移植步骤
    为了使U-Boot支持新的开发板,一种简便的做法是在U-Boot已经支持的开发板中选择一种和目标板接近的,并在其基础上进行修改。代码修改的步骤如下: 
1)在board目录下创建smdk2410目录,添加smdk2410.c、flash.c、memsetup.s、u-boot.lds和config.mk等;
2)在cpu目录下创建arm920t目录,主要包含start.s、interrupts.c、cpu.c、serial.c和speed.c等文件;
3)在include/configs目录下添加smdk2410.h,它定义了全局的宏定义等;
4)修改u-boot根目录下的Makefile文件:
smdk2410_config : unconfig@./mkconfig $(@:_config=) arm arm920t smdk2410
5)运行make smdk2410_config,如果没有错误,就可以开始进行与硬件相关的代码移植工作。由于这部分代码与硬件紧密相关,所以要熟悉开发板的硬件配置,可参考各芯片的用户手册。
     
U-Boot启动过程 
    U-Boot的启动过程可以分成3个阶段。首先在Flash中运行汇编程序,将Flash中的启动代码部分复制到SDRAM中,同时创造环境准备运行C程序;然后在SDRAM中执行,对硬件进行初始化;最后设置内核参数的标记列表,复制镜像文件,进入内核的入口函数。

    1) 程序首先在Flash中运行CPU入口函数/cpu/arm920t/start.s。具体工作包括:设置异常的入口地址和异常处理函数;配置PLLCON寄存器,确定系统的主频;屏蔽看门狗和中断;初始化I/O寄存器;关闭MMU功能;调用/board/smdk2410中的memsetup.s,初始化存储器空间,设置刷新频率;将U-Boot的内容复制到SDRAM中;设置堆栈的大小,ldr pc, _start_armboot。

    board/s3c2410中config.mk文件(TEXT_BASE = 0x31F00000)用于设置程序编译连接的起始地址,在程序中要特别注意与地址相关指令的使用。

    当程序在Flash中运行时,执行程序跳转时必须要使用跳转指令,而不能使用绝对地址的跳转(即直接对PC操作)。如果使用绝对地址,那么,程序的取指是相对于当前PC位置向前或者向后的32MB空间内,而不会跳入SDRAM中。

    2) 程序跳转到SDRAM中执行/lib_arm/board.c中的start_armboot()函数。该函数将完成如下工作:
*设置通用端口rGPxCON;rGPxUP;设置处理器类型gd->bd->bi_arch_number = 193;设置启动参数地址gd->bd->bi_boot_params = 0x30000100;
* env_init:设置环境变量,初始化环境;
* init_baudrate:设置串口的波特率;
* serial_init:设置串口的工作方式;
* flash_init:设置ID号、每个分页的起始地址等信息,将信息送到相应的结构体中;
* dram_init:设置SDRAM的起始地址和大小;
* env_relocate:将环境变量的地址送到全局变量结构体中(gd->env_addr = (ulong)&(env_ptr->data));
* enable_interrupts:开启中断;
* main_loop:该函数主要用于设置延时等待,从而确定目标板是进入下载操作模式还是装载镜像文件启动内核。在设定的延时时间范围内,目标板将在串口等待输入命令,当目标板接到正确的命令后,系统进入下载模式。在延时时间到达后,如果没有接收到相关命令,系统将自动进入装载模式,执行bootm 30008000 30800000命令,程序进入do_bootm_linux()函数,调用内核启动函数; 

    3) 装载模式下系统将执行do_bootm_linux()函数,0x30008000是内核在SDRAM中的起始地址;0x30800000是ramdisk在SDRAM中的起始地址;0x40000是内核在Flash中的位置,0x100000是数据块的大小;0x140000是ramdisk在FLASH中的位置,0x440000是数据块的大小。系统调用memcpy()函数将内核从flash和ramdisk复制到SDRAM中,具体如下:
memcpy((void *)0x30008000, (void *)0x40000, 0x100000);//复制数据块
memcpy((void *)0x30800000, (void *)0x140000, 0x440000);//复制数据块 

    通常,将内核参数传递给Linux操作系统有两种方法:采用struct param_struct结构体或标记列表。本系统中采用了第二种方法。

    一个合法的标记列表开始于ATAG_CORE,结束于ATAG_NONE。ATAG_CORE可以为空,一个空的ATAG_CORE的size字段设为“2”(0x00000002)。ATAG_NONE 的size字段必须设为“0”。标记列表可以有任意多的标记(tag)。在嵌入式Linux系统中,通常由U-Boot设置的启动参数有:ATAG_CORE、ATAG_MEM、ATAG_CMDLINE、ATAG_RAMDISK、ATAG_INITRD等。

   在本系统中,传递参数时分别调用了以下tag:
setup_start_tag(bd);   //标记列表开始
setup_memory_tags(bd); //设置内存的起始位置和大小
setup_commandline_tag(bd, commandline); /*Linux内核在启动时可以命令行参数的形式来接收信息,利用这一点可以向内核提供那些内核不能检测的硬件参数信息,或者重载(override)内核检测到的信息,这里char *commandline "initrd=0x30800000,0x440000  root=/dev/ram init=/linuxrc console=ttyS0";*/
setup_ramdisk_tag(bd);  //表示内核解压后ramdisk的大小
setup_initrd_tag(bd, initrd_start, initrd_end); //设置ramdisk的大小和物理起始地址
setup_end_tag(bd);    //标记列表结束

   其中bd_t *bd = gd->bd是指向bd_t 结构体的指针,在该结构体中存放了关于开发板配置的基本信息。标记列表应该放在内核解压和initrd的bootp程序都不会覆盖的内存区域,同时又不能和异常处理的入口地址相冲突。建议放在RAM起始的16K大小处,在本系统中即为0x30000100处。

  U-BOOT调用 Linux 内核的方法是直接跳转到内核的第一条指令处,也即直接跳转到 MEM_START+0x8000地址处。在跳转时,要满足下列条件:
a) CPU寄存器的设置:R0=0;R1=机器类型 ID,本系统的机器类型ID=193。R2=启动参数标记列表在RAM中的起始基地址; 
b) CPU模式:必须禁止中断(IRQs和FIQs);CPU必须工作在SVC模式;
c) Cache和MMU的设置:MMU 必须关闭;指令Cache可以打开也可以关闭;数据Cache必须关闭。 

      系统采用下列代码来进入内核函数:
theKernel = (void (*)(int, int))ntohl(hdr->ih_ep);
theKernel(0, bd->bi_arch_number);其中,hdr是image_header_t类型的结构体,hdr->ih_ep指向内核的第一条指令地址,即Linux操作系统下的/kernel/arch/arm/boot/compressed/head.S汇编程序。theKernel()函数调用应该不会返回,如果该调用返回,则说明出错。

结语
      本文总结介绍了U-Boot在S3C2410上的移植,移植完成后,U-Boot能够稳定地运行在开发板上,为后续的软件开发打下较好的基础


  来源:xiangxueqin 192781:
引言

随着嵌入式系统的日趋复杂,它对大容量数据存储的需求越来越紧迫。而嵌入式设备低功耗、小体积以及低成本的要求,使硬盘无法得到广泛的应用。NAND闪存设备就是为了满足这种需求而迅速发展起来的。目前关于U-BOOT的移植解决方案主要面向的是微处理器中的NOR 闪存,如果能在微处理器上的NAND 闪存中实现U-BOOT的启动,则会给实际应用带来极大的方便。

U-BOOT简介

U-BOOT 支持ARM、 PowerPC等多种架构的处理器,也支持Linux、NetBSD和VxWorks等多种操作系统,主要用来开发嵌入式系统初始化代码bootloader。bootloader是芯片复位后进入操作系统之前执行的一段代码,完成由硬件启动到操作系统启动的过渡,为运行操作系统提供基本的运行环境,如初始化CPU、堆栈、初始化存储器系统等,其功能类似于PC机的BIOS。U-BOOT执行流程图如图1所示。

图1 U-BOOT启动流程图

NAND闪存工作原理

S3C2410开发板的NAND闪存由NAND闪存控制器(集成在S3C2410 CPU中)和NAND闪存芯片(K9F1208U0A)两大部分组成。当要访问NAND闪存芯片中的数据时,必须通过NAND闪存控制器发送命令才能完成。所以, NAND闪存相当于S3C2410的一个外设,而不位于它的内存地址区。

NAND闪存(K9F1208U0A)的数据存储结构分层为:1设备(Device) = 4096 块(Block);1块= 32页/行(Page/row);1页= 528B = 数据块 (512B) + OOB块 (16B)
在每一页中,最后16个字节(又称OOB)在NAND闪存命令执行完毕后设置状态,剩余512个字节又分为前半部分和后半部分。可以通过NAND闪存命令00h/01h/50h分别对前半部、后半部、OOB进行定位,通过NAND闪存内置的指针指向各自的首地址。
NAND闪存的操作特点为:擦除操作的最小单位是块;NAND闪存芯片每一位只能从1变为0,而不能从0变为1,所以在对其进行写入操作之前一定要将相应块擦除;OOB部分的第6字节为坏快标志,即如果不是坏块该值为FF,否则为坏块;除OOB第6字节外,通常用OOB的前3个字节存放NAND闪存的硬件ECC(校验寄存器)码;

从NAND闪存启动U-BOOT的设计思路

如果S3C2410被配置成从NAND闪存启动,上电后,S3C2410的NAND闪存控制器会自动把NAND闪存中的前4K数据搬移到内部RAM中, 并把0x00000000设置为内部RAM的起始地址, CPU从内部RAM的0x00000000位置开始启动。因此要把最核心的启动程序放在NAND闪存的前4K中。

由于NAND闪存控制器从NAND闪存中搬移到内部RAM的代码是有限的,所以, 在启动代码的前4K里,必须完成S3C2410的核心配置,并把启动代码的剩余部分搬到RAM中运行。在U-BOOT中, 前4K完成的主要工作就是U-BOOT启动的第一个阶段(stage1)。
根据U-BOOT的执行流程图,可知要实现从NAND闪存中启动U-BOOT,首先需要初始化NAND闪存,并从NAND闪存中把U-BOOT搬移到RAM中,最后需要让U-BOOT支持NAND闪存的命令操作。
  
开发环境

本设计中目标板硬件环境如下:CPU为S3C2410,SDRAM为HY57V561620,NAND闪存为64MB的K9F1208U0A。

主机软件环境为Redhat9.0、 u-boot-1.1.3、gcc 2.95.3。修改U-BOOT的Makefile,加入:
wch2410_config : unconfig
@./mkconfig $(@:_config=) arm arm920t wch2410 NULL s3c24x0
即将开发板起名为wch2410,接下来依次进行如下操作:
mkdir board/wch2410
cp board/smdk2410 board/wch2410
mv smdk2410.c wch2410.c
cp include/configs/smdk2410.h include/configs/wch2410.h
export PATH=/usr/local/arm/2.95.3/bin:$PATH
最后执行:
make wch2410_config
make all ARCH=arm
生成u-boot.bin,即通过了测试编译。

具体设计

支持NAND闪存的启动程序设计

因为U-BOOT的入口程序是/cpu/arm920t/start.S,故需在该程序中添加NAND闪存的复位程序,以及实现从NAND闪存中把U-BOOT搬移到RAM中的功能程序。

首先在/include/configs/wch2410.h中加入CONFIG_S3C2410_NAND_BOOT, 如下:
#define CONFIG_S3C2410_NAND_BOOT 1?? @支持从NAND 闪存中启动
然后在/cpu/arm920t/start.S中添加
#ifdef CONFIG_S3C2410_NAND_BOOT
copy_myself:
mov r10, lr
ldr sp, DW_STACK_START  @安装栈的起始地址
mov fp, #0          @初始化帧指针寄存器
bl nand_reset        @跳到复位C函数去执行,执行NAND闪存复位
.......
/*从NAND闪存中把U-BOOT拷贝到RAM*/
ldr r0, =UBOOT_RAM_BASE  @ 设置第1个参数: UBOOT在RAM中的起始地址
mov r1, #0x0        @ 设置第2个参数:NAND闪存的起始地址
mov r2, #0x20000     @ 设置第3个参数: U-BOOT的长度(128KB)
bl nand_read_whole    @ 调用nand_read_whole(),把NAND闪存中的数据读入到RAM中
tst r0, #0x0        @ 如果函数的返回值为0,表示执行成功
beq ok_nand_read      @ 执行内存比较,把RAM中的前4K内容与NAND闪存中的前4K内容进行比较, 如果完全相同, 则表示搬移成功
其中,nand_reset (),nand_read_whole()被加在/board/wch2410/wch2410.c中。

支持U-BOOT命令设计

在U-BOOT下对nand闪存的支持主要是在命令行下实现对nand闪存的操作。对nand闪存实现的命令为:nand info(打印nand Flash信息)、nand device(显示某个nand闪存设备)、nand read(读取nand闪存)、nand write(写nand闪存)、nand erease(擦除nand闪存)、nand bad(显示坏块)等。

用到的主要数据结构有:struct nand_flash_dev、struct nand_chip。前者包括主要的芯片型号、存储容量、设备ID、I/O总线宽度等信息;后者是具体对NAND闪存进行操作时用到的信息。

a. 设置配置选项

修改/include/configs/wch2410.h,主要是在CONFIG_COMMANDS中打开CFG_CMD_NAND选项。定义NAND闪存控制器在SFR区中的起始寄存器地址、页面大小,定义NAND闪存命令层的底层接口函数等。

b. 加入NAND闪存芯片型号

在/include/linux/mtd/ nand_ids.h中对如下结构体赋值进行修改:
static struct nand_flash_dev nand_flash_ids[] = {
......
{"Samsung K9F1208U0A", NAND_MFR_SAMSUNG, 0x76, 26, 0, 3, 0x4000, 0},
.......
                         }
这样对于该款NAND闪存芯片的操作才能正确执行。
c. 编写NAND闪存初始化函数
在/board/wch2410/wch2410.c中加入nand_init()函数。
void nand_init(void)
{
/* 初始化NAND闪存控制器, 以及NAND闪存芯片 */
nand_reset();
/* 调用nand_probe()来检测芯片类型 */
printf ("%4lu MB\n", nand_probe(CFG_NAND_BASE) >> 20);
}
该函数在启动时被start_armboot()调用。
最后重新编译U-BOOT并将生成的u-boot.bin烧入NAND闪存中,目标板上电后从串口输出如下信息:
U-Boot 1.1.3 (Nov 14 2006 - 11:29:50)
U-Boot code: 33F80000 -> 33F9C9E4 BSS: -> 33FA0B28
RAM Configuration:
Bank #0: 30000000 64 MB
## Unknown Flash on Bank 0: ID 0xffff, Size = 0x00000000 = 0 MB
Flash: 0 kB
NAND: 64 MB
In:  serial
Out: serial
Err: serial
Hit any key to stop autoboot: 0
wch2410 #

结语

以往将U-BOOT移植到ARM9平台中的解决方案主要针对的是ARM9中的NOR闪存,因为NOR闪存的结构特点致使应用程序可以直接在其内部运行,不用把代码读到RAM中,移植过程相对简单。从NAND闪存中启动U-BOOT的设计难点在于NAND闪存需要把U-BOOT的代码搬移到RAM中,并要让U-BOOT支持NAND闪存的命令操作。本文介绍了实现这一设计的思路及具体程序。移植后,U-BOOT在嵌入式系统中运行良好。