禅师的一生:恒星、行星、卫星、彗星、新星、星云、星风、白矮星

来源:百度文库 编辑:偶看新闻 时间:2024/05/03 05:52:10
恒星//行星//小行星//卫星//彗星//新星//类星体//星团//星云
星风/恒星风//超新星//球状星团//矮星//白矮星
恒星
恒星是由炽热气体组成的,是能自己发光的球状或类球状天体. 离地球最近的恒星是太阳。其次是处于半人马座的比邻星,它发出的光到达地球需要4.22年。恒星都是气体星球。晴朗无月的夜晚,且无光污染的地区,一般人用肉眼大约可以看到 6000多颗恒星。借助于望远镜,则可以看到几十万乃至几百万颗以上。估计银河系中的恒星大约有一、二千亿颗。恒星并非不动,只是因为离我们实在太远,不借助于特殊工具和方法,很难发现它们在天上的位置变化,因此古代人把它们认为是固定不动的星体,叫作恒星。
恒星也有自己的生命史,它们从诞生、成长到衰老,最终走向死亡。它们大小不同,色彩各异,演化的历程也不尽相同。恒星与生命的联系不仅表现在它提供了光和热。实际上构成行星和生命物质的重原子就是在某些恒星生命结束时发生的爆发过程中创造出来的。
距离
恒星的星等相差很大,这里面固然有恒星本身发光强弱的原因,但是离开我们距离的远近也起着显著的作用。测定恒星距离最基本的方法是三角视差法,此法主要用于测量较近的恒星距离,过程如下,先测得地球轨道半长径在恒星处的张角(叫作周年视差),再经过简单的运算,即可求出恒星的距离。这是测定距离最直接的方法。在十六世纪哥白尼公布了他的日心说以后,许多天文学家试图测定恒星的距离,但都由于它们的数值很小以及当时的观测精度不高而没有成功。直到十九世纪三十年代后半期,才取得成功。然而对大多数恒星说来,这个张角太小,无法测准。所以测定恒星距离常使用一些间接的方法,如分光视差法、星团视差法、统计视差法以及由造父变星的周光关系确定视差,等等。这些间接的方法都是以三角视差法为基础的。自二十世纪二十年代以后,许多天文学家开展这方面的工作,到二十世纪九十年代初,已有8000多颗恒星的距离被用照相方法测定。在二十世纪九十年代中期,依靠“依巴谷”卫星进行的空间天体测量获得成功,在大约三年的时间里,以非常高的准确度测定了10万颗恒星的距离。
恒星的距离,若用千米表示,数字实在太大,为使用方便,通常采用光年作为单位。1光年是光在一年中通过的距离。真空中的光速是每秒30万千米,乘一年的秒数,得到1光年约等于9.46万亿公里。
星等
恒星的亮度常用星等来表示。恒星越亮,星等越小。在地球上测出的星等叫视星等;归算到离地球10秒差距处的星等叫绝对星等。使用对不同波段敏感的检测元件所测得的同一恒星的星等,一般是不相等的。目前最通用的星等系统之一是U(紫外)B(蓝)、V(黄)三色系统。B和V分别接近照相星等和目视星等。二者之差就是常用的色指数。太阳的V=-26.74等,绝对目视星等M=+4.83等,色指数B-V=0.63,U-B=0.12。由色指数可以确定色温度。
温度
恒星表面的温度一般用有效温度来表示,它等于有相同直径、相同总辐射的绝对黑体的温度。恒星的光谱能量分布与有效温度有关,由此可以定出O、B、A、F、G、K、M等光谱型(也可以叫作温度型)温度相同的恒星,体积越大,总辐射流量(即光度)越大,绝对星等越小。恒星的光度级可以分为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ,依次称为:Ⅰ超巨星、Ⅱ亮巨星、Ⅲ正常巨星、Ⅳ亚巨星、Ⅴ矮星、Ⅵ亚矮星、Ⅶ白矮星 。太阳的光谱型为G2V,颜色偏黄,有效温度约5,770K。A0V型星的色指数平均为零,温度约10,000K。恒星的表面有效温度由早O型的几万度到晚M型的几千度,差别很大。
恒星光谱分类
恒星分类是依据光谱和光度进行的二元分类。在通俗的简化的分类中,前者可由恒星的颜色区分,后者则大致分为“巨星”和“矮星”,比如太阳是一颗“黄矮星”,常见的名称还有“蓝巨星”和“红巨星”等。
根据维恩定律,恒星的颜色与温度有直接的关系。所以天文学家可以由恒星的光谱得知恒星的性质。
故此,天文学家自19世纪便开始根据恒星光谱的吸收线,以光谱类型将恒星分类。天体物理学就是由此发展起来的。
依据恒星光谱,恒星从温度最高的O型,到温度低到分子可以存在于恒星大气层中的M型,可以分成好几种类型。而最主要的型态,可利用"Oh,Be A Fine Girl, Kiss Me"(也有将"girl"改为"guy")这句英文来记忆(还有许多其它形式的口诀记忆),各种罕见的光谱也有各特殊的分类,其中比较常见的是L和T,适用于比M型温度更低和质量更小的恒星和棕矮星。每个类型由高温至低温依序以数字0到9来标示,再细分10个小类。此分类法与温度高低相当符合,但是还没有恒星被分类到温度最高的O0和O1。
光谱类型 表面温度 颜色
O 30,000 - 60,000 K 蓝
B 10,000 - 30,000 K 蓝白
A 7,500 - 10,000 K 白
F 6,000 - 7,500 K 黄白
G 5,000 - 6,000 K 黄(太阳属于此类型)
K 3,500 - 5,000 K 橙黄
M 2,000 - 3,500 K 红
另一方面,恒星还有加上“光度效应”,对应于恒星大小的二维分类法,从0(超巨星)经由III(巨星)到V(矮星)和VII(白矮星)。大多数恒星皆以燃烧氢的普通恒星,也就是主序星。当以光谱对应绝对星等绘制赫罗图时,这些恒星都分布在对角在线很窄的范围内。
太阳的类型是G2V(黄色的矮星),是颗大小与温度都很普通的恒星。太阳被作为恒星的典型样本,并非因为它很特别,只因它是离我们最近的恒星,且其它恒星的许多特征都能以太阳作为一个单位来加之比较。
大小
恒星的真直径可以根据恒星的视直径(角直径)和距离计算出来。常用的干涉仪或月掩星方法可以测出小到0.01的恒星的角直径,更小的恒星不容易测准,加上测量距离的误差,所以恒星的真直径可靠的不多。根据食双星兼分光双星的轨道资料,也可得出某些恒星直径。对有些恒星,也可根据绝对星等和有效温度来推算其真直径。用各种方法求出的不同恒星的直径,有的小到几公里量级,有的大到10公里以上。 恒星的大小相差也很大 , 有的是巨人 , 有的是侏儒。地球的直径约为 13000 千米 , 太阳的直径是地球的 109 倍。巨星是恒星世界中个头最大的 , 它们的直径要比太阳大几十到几百倍。超巨星就更大了 , 红超巨星心宿二 ( 即天揭座α ) 的直径是太阳的 600 倍;红超巨星参宿四 ( 即猎户座α ) 的直径是太阳的 900倍 , 假如它处在太阳的位置上 , 那么它的大小几乎能把木星也包进去。它们还不算最大的 , 仙王座 VV 是一对双星 , 它的主星 A 的直径是太阳的 1600 倍;HR237 直径为太阳的 1800倍。还有一颗叫做柱一的双星 , 其伴星比主星还大 , 直径是太阳的 2000-3000 倍。这些巨星和超巨星都是恒星世界中的巨人。
看完了恒星世界中的巨人,我们再来看看它们当中的侏儒。在恒星世界当中,太阳的大小属中等,比太阳小的恒星也有很多,其中最突出的要数白矮星和中子星了。白矮星的直径只有几千千米,和地球差不多,中子星就更小了,它们的直径只有 20 千米左右,白矮星和中子星都是恒星世界中的侏儒。我们知道,一个球体的体积与半径的立方成正比。如果拿体积来比较的话,上面提到的柱一就要比太阳大九十多亿倍,而中子星就要比太阳小几百万亿倍。由此可见, 巨人与侏儒的差别有多么悬殊。
质量
只有特殊的双星系统才能测出质量来,一般恒星的质量只能根据质光关系等方法进行估算。已测出的恒星质量大约介于太阳质量的百分之几到120倍之间,但大多数恒星的质量在0.1~10个太阳质量之间。恒星的密度可以根据直径和质量求出,密度的量级大约介于10克/厘米(红超巨星)到 10~10克/厘米(中子星)之间。
恒星表面的大气压和电子压可通过光谱分析来确定。元素的中性与电离谱线的强度比,不仅同温度和元素的丰度有关,也同电子压力密切相关。电子压与气体压之间存在着固定的关系,二者都取决于恒星表面的重力加速度,因而同恒星的光度也有密切的关系。
根据恒星光谱中谱线的塞曼分裂(见塞曼效应)或一定波段内连续谱的圆偏振情况,可以测定恒星的磁场。太阳表面的普遍磁场很弱,仅约1~2高斯,有些恒星的磁场则很强,能达数万高斯。白矮星和中子星具有更强的磁场。
化学组成
与在地面实验室进行光谱分析一样,我们对恒星的光谱也可以进行分析,借以确定恒星大气中形成各种谱线的元素的含量,当然情况要比地面上一般光谱分析复杂得多。多年来的实测结果表明,正常恒星大气的化学组成与太阳大气差不多。按质量计算,氢最多,氦次之,其余按含量依次大致是氧、碳、氮、氖、硅、镁、铁、硫等。但也有一部分恒星大气的化学组成与太阳大气不同,例如沃尔夫-拉叶星,就有含碳丰富和含氮丰富之分(即有碳序和氮序之分)在金属线星和A型特殊星中,若干金属元素和超铀元素的谱线显得特别强。但是,这能否归结为某些元素含量较多,还是一个问题。
理论分析表明,在演化过程中,恒星内部的化学组成会随着热核反应过程的改变而逐渐改变,重元素的含量会越来越多,然而恒星大气中的化学组成一般却是变化较小的。
物理特性的变化
观测发现,有些恒星的光度、光谱和磁场等物理特性都随时间的推移发生周期的、半规则的或无规则的变化。这种恒星叫作变星。变星分为两大类:一类是由于几个天体间的几何位置发生变化或恒星自身的几何形状特殊等原因而造成的几何变星;一类是由于恒星自身内部的物理过程而造成的物理变星。
几何变星中,最为人们熟悉的是两个恒星互相绕转(有时还有气环或气盘参与)因而发生变光现象的食变星(即食双星)。根据光强度随时间改变的“光变曲线”,可将它们分为大陵五型、天琴座β(渐台二)型和大熊座W型三种几何变星中还包括椭球变星(因自身为椭球形,亮度的变化是由于自转时观测者所见发光面积的变化而造成的)、星云变星(位于星云之中或之后的一些恒星,因星云移动,吸光率改变而形成亮度变化)等。可用倾斜转子模型解释的磁变星,也应归入几何变星之列。
物理变星,按变光的物理机制,主要分为脉动变星和爆发变星两类。脉动变星的变光原因是:恒星在经过漫长的主星序阶段以后(见赫罗图),自身的大气层发生周期性的或非周期性的膨胀和收缩,从而引起脉动性的光度变化。理论计算表明脉动周期与恒星密度的平方根成反比。因此那些重复周期为几百乃至几千天的晚型不规则变星、半规则变星和长周期变星都是体积巨大而密度很小的晚型巨星或超巨星周期约在1~50天之间的经典造父变星和周期约在,0.05~1.5天之间的天琴座RR型变星(又叫星团变星),是两种最重要的脉动变星。观测表明,前者的绝对星等随周期增长而变小(这是与密度和周期的关系相适应的),因而可以通过精确测定它们的变光周期来推求它们自身以及它们所在的恒星集团的距离,所以造父变星又有宇宙中的“灯塔”或“量天尺”之称。天琴座RR型变星也有量天尺的作用。
还有一些周期短于0.3天的脉动变星 (包括'" class=link>盾牌座型变星、船帆座AI型变星和型变星'" class=link>仙王座型变星等),它们的大气分成若干层,各层都以不同的周期和形式进行脉动,因而,其光度变化规律是几种周期变化的迭合,光变曲线的形状变化很大,光变同视向速度曲线的关系也有差异。盾牌座δ型变星和船帆座AI型变星可能是质量较小、密度较大的恒星,仙王座β型变星属于高温巨星或亚巨星一类。
爆发变星按爆发规模可分为超新星、新星、矮新星、类新星和耀星等几类。超新星的亮度会在很短期间内增大数亿倍,然后在数月到一、二年内变得非常暗弱。目前多数人认为这是恒星演化到晚期的现象。超新星的外部壳层以每秒钟数千乃至上万公里的速度向外膨胀,形成一个逐渐扩大而稀薄的星云;内部则因极度压缩而形成密度非常大的中子星之类的天体。最著名的银河超新星是中国宋代(公元1054年)在金牛座发现的“天关客星”。现在可在该处看到著名的蟹状星云,其中心有一颗周期约33毫秒的脉冲星。一般认为,脉冲星就是快速自转的中子星。
新星在可见光波段的光度在几天内会突然增强大约9个星等或更多,然后在若干年内逐渐恢复原状。1975年8 月在天鹅座发现的新星是迄今已知的光变幅度最大的一颗。光谱观测表明,新星的气壳以每秒500~2,000公里的速度向外膨胀。一般认为,新星爆发只是壳层的爆发,质量损失仅占总质量的千分之一左右,因此不足以使恒星发生质变。有些爆发变星会再次作相当规模的爆发,称为再发新星。
矮新星和类新星变星的光度变化情况与新星类似,但变幅仅为2~6个星等,发亮周期也短得多。它们多是双星中的子星之一,因而不少人的看法倾向于,这一类变星的爆发是由双星中某种物质的吸积过程引起的。
耀星是一些光度在数秒到数分钟间突然增亮而又很快回复原状的一些很不规则的快变星。它们被认为是一些低温的主序前星。 还有一种北冕座 R型变星,它们的光度与新星相反,会很快地突然变暗几个星等,然后慢慢上升到原来的亮度。观测表明,它们是一些含碳量丰富的恒星。大气中的碳尘埃粒子突然大量增加,致使它们的光度突然变暗,因而也有人把它们叫作碳爆变星。  随着观测技术的发展和观测波段的扩大,还发现了射电波段有变化的射电变星和X射线辐射流量变化的X射线变星等。
恒星结构
根据实际观测和光谱分析,我们可以了解恒星大气的基本结构。一般认为在一部分恒星中,最外层有一个类似日冕状的高温低密度星冕。它常常与星风有关。有的恒星已在星冕内发现有产生某些发射线的色球层,其内层大气吸收更内层高温气体的连续辐射而形成吸收线。人们有时把这层大气叫作反变层,而把发射连续谱的高温层叫作光球。其实,形成恒星光辐射的过程说明,光球这一层相当厚,其中各个分层均有发射和吸收。光球与反变层不能截然分开。太阳型恒星的光球内,有一个平均约十分之一半径或更厚的对流层。在上主星序恒星和下主星序恒星的内部,对流层的位置很不相同。能量传输在光球层内以辐射为主,在对流层内则以对流为主。
对于光球和对流层,我们常常利用根据实际测得的物理特性和化学组成建立起来的模型进行较详细的研究。我们可以从流体静力学平衡和热力学平衡的基本假设出发,建立起若干关系式,用以求解星体不同区域的压力、温度、密度、不透明度、产能率和化学组成等。在恒星的中心,温度可以高达数百万度乃至数亿度,具体情况视恒星的基本参量和演化阶段而定。在那里,进行着不同的产能反应。一般认为恒星是由星云凝缩而成,主星序以前的恒星因温度不够高,不能发生热核反应,只能靠引力收缩来产能。进入主星序之后,中心温度高达700万度以上,开始发生氢聚变成氦的热核反应。这个过程很长,是恒星生命中最长的阶段。氢燃烧完毕后,恒星内部收缩,外部膨胀,演变成表面温度低而体积庞大的红巨星,并有可能发生脉动。那些内部温度上升到近亿度的恒星,开始发生氦碳循环。在这些演化过程中,恒星的温度和光度按一定规律变化,从而在赫罗图上形成一定的径迹。最后,一部分恒星发生超新星爆炸,气壳飞走,核心压缩成中子星一类的致密星而趋于“死亡”(见恒星的形成和演化)。
恒星的演化
恒星演化是一个恒星在其生命期内(发光与发热的期间)的连续变化。生命期则依照星体大小而有所不同。
单一恒星的演化并没有办法完整观察,因为这些过程可能过于缓慢以致于难以察觉。因此天文学家利用观察许多处于不同生命阶段的恒星,并以计算机模型模拟恒星的演变。
恒星的演化过程
1.恒星的形成
在宇宙发展到一定时期,宇宙中充满均匀的中性原子气体云,大体积气体云由于自身引力而不稳定造成塌缩。这样恒星便进入形成阶段。在塌缩开始阶段,气体云内部压力很微小,物质在自引力作用下加速向中心坠落。当物质的线度收缩了几个数量级后,情况就不同了,一方面,气体的密度有了剧烈的增加,另一方面,由于失去的引力位能部分的转化成热能,气体温度也有了很大的增加,气体的压力正比于它的密度与温度的乘积,因而在塌缩过程中,压力增长更快,这样,在气体内部很快形成一个足以与自引力相抗衡的压力场,这压力场最后制止引力塌缩,从而建立起一个新的力学平衡位形,称之为星坯。
星坯的力学平衡是靠内部压力梯度与自引力相抗衡造成的,而压力梯度的存在却依赖于内部温度的不均匀性(即星坯中心的温度要高于外围的温度),因此在热学上,这是一个不平衡的系统,热量将从中心逐渐地向外流出。这一热学上趋向平衡的自然倾向对力学起着削弱的作用。于是星坯必须缓慢的收缩,以其引力位能的降低来升高温度,从而来恢复力学平衡;同时也是以引力位能的降低,来提供星坯辐射所需的能量。这就是星坯演化的主要物理机制。
2.恒星的稳定期——主序星
主序星阶段在收缩过程中密度增加,我们知道ρ∝r-3,由式(4),rc∝r3/2,所以rc比 r减小的更快,收缩气云的一部分又达到新条件下的临界,小扰动可以造成新的局部塌缩。如此下去在一定的条件下,大块气云收缩为一个凝聚体成为原恒星,原恒星吸附周围气云后继续收缩,表面温度不变,中心温度不断升高,引起温度、密度和气体成分的各种核反应。产生热能使气温升的极高,气体压力抵抗引力使原恒星稳定下来成为恒星,恒星的演化是从主序星开始的。
恒星的成份大部分是H和He,当温度达到104K以上,即粒子的平均热动能达1eV以上,氢原子通过热碰撞就充分的电离了(氢的电离能是13.6eV),在温度进一步升高后,等离子气体中氢核与氢核的碰撞就可能引起核反应。对纯氢的高温气体,最有效的核反应系列是所谓的P-P链:
其中主要是2D(p,γ)3He反应。D含量只有氢的10-4左右,很快就燃完了。如果开始时D比3He含量多,则反应生成的3H可能就是恒星早期3He的主要来源,由于对流到达恒星表面的这种3He,有可能还保留到现在。
Li,Be,B等轻核和D一样结合能很低,含量只是H 的2×10-9K左右,当中心温度超过3×106K就开始燃烧,引起(p,α)和(p,α)反应,很快成为3He和4He。 中心温度达到107K,密度达到 105kg/m3左右时,产生的氢转化为He的41H→4He过程。这主要是p-p和CNO循环。同时含有1H和4He是发生p-p链反应,有以下三个分支组成:
p-p1(只有1H) p-p2(同时有1H、4He) p-p3
或假设1H 和4He的重量比相等。随温度升高,反应从p-p1逐渐过渡到p-p3,
而当T>1.5×107K时,恒星中燃烧H的过程就可过渡到以CNO循环为主了。
当恒星内混杂有重元素C和N时,他们能作为触媒使1H变为4He,这就是CNO循环,CNO循环有两个分支:
或总反应率取决于最慢的14N(p,γ)15O、15N的(p,α)和(p,γ)反应分支比约为2500:1。
这个比值几乎与温度无关,所以在2500次CNO循环中有一次是CNO-2。
在p-p链和CNO循环过程中,净效果是H燃烧生成He:
在释放出的26.7MeV能量中,大部分消耗给恒星加热和发光,成为恒星的主要来源。
前面我们提到恒星的演化是从主星序开始的,那么什么是主星序呢?等H稳定地燃烧为He时,恒星就成了主序星。人们发现有百分之八十至九十的恒星都是主序星,他们共同特征是核心区都有氢正在燃烧,他们的光度、半径和表面温度都有所不同,后来证明:主序星的定量上差别主要是质量不同,其次是他们的年龄和化学成份,太阳这段历程约千万年。
观察到的主序星的最小质量大约为0.1M⊙ 。模型计算表明,当质量小于0.08M⊙时,星体的收缩将达不到氢的点火温度,从而形不成主序星,这说明对于主序星它有一个质量下限。观察到的主序星的最大质量大约是几十个太阳质量。理论上讲,质量太大的恒星辐射很强,内部的能量过程很剧烈,因此结构也越不稳定。但是理论上没有一个质量的绝对上限。
当对某一星团作统计分析时,人们却发现主序星有一个上限,这说明什么?我们知道,主序星的光度是质量的函数,这函数可分段的用幂式表示:
L∝Mν
其中υ不是一个常数,它的值大概在3.5到4.5之间。M大反映主序星中可供燃烧的质量多,而L大反映燃烧的快,因此主序星的寿命可近似用M与L的商标来标志:
T∝M-(ν-1)
即主序星寿命随质量增大而按幂律减小,如果整个星团已存在的年龄为T,那就可以由T与M的关系式求出一个截止质量MT。质量大于MT的主序星已结束核心的H燃烧阶段而不是主序星了,这就是观察到由大量同年龄星组成的星团有上限的原因。
现在我们就讨论观测到的恒星中大部分是主序星的原因,表1根据一25M⊙的恒燃烧阶段 点火温度(K) 中心温度(g.cm-3) 持续时间(yr)
H 4×107 4 7×106
He 2×108 6×102 5×105
C 7×108 6×105 5×102
Ne 1.5×109 4×106 1
O 2×109 1×107 5×10-2
Si 3.5×109 1×108 3×10-3
燃烧阶段的总寿命 7.5×106
星演化模型,列出了各种元素的点火温度及燃烧所持续的时间。从表上看出,原子序数大的和有更高的点火温度,Z大的核不仅难于点火,点火后燃烧也更剧烈,因此燃烧持续的的时间也就更短。这颗25M⊙的 表1 25M⊙恒星演化模型,模型星的燃烧阶段的总寿命为7.5×106年,而其中百分之九十以上的时间是氢燃烧阶段,即主星序阶段。从统计角度讲,这表明找到一颗处于主星序阶段的恒星几率要大。这正是观察到的恒星大多数为主序星的基本原因。
3.恒星的晚年
主序后的演化由于恒星形成是它的主要成份是氢,而氢的点火温度又比其他元素都低,所以恒星演化的第一阶段总是氢的燃烧阶段,即主序阶段。在主序阶段,恒星内部维持着稳衡的压力分布和表面温度分布,所以在整个漫长的阶段,它的光度和表面温度都只有很小的变化。下面我们讨论,当星核区的氢燃烧完毕后,恒星有将怎么进一步演化?
恒星在燃烧尽星核区的氢之后,就熄火,这时核心区主要是氢,他是燃烧的产物外围区的物质主要是未经燃烧的氢,核心熄火后恒星失去了辐射的能源,它便要引力收缩是一个起关键作用的因素。一个核燃烧阶段的结束,表明恒星内各处温度都已低于在该处引起点火所需要的温度,引力收缩将使恒星内各处的温度升高,这实际上是寻找下一次核点火所需要的温度,引力收缩将使恒星内各处的温度全面的升高,主序后的引力收缩首先点着的不是核心区的氦(它的点火温度高的太多),而是核心与外围之间的氢壳,氢壳点火后,核心区处于高温状态,而仍没核能源,他将继续收缩。这时,由于核心区释放的引力位能和燃烧中的氢所释放的核能,都需要通过外围不燃烧的氢层必须剧烈地膨胀,即让介质辐射变得更透明。而氢层膨胀又使恒星的表面温度降低了,所以这是一个光度增加、半径增加、而表面变冷的过程,这个过程是恒星从主星序向红巨星过渡,过程进行到一定程度,氢区中心的温度将达到氢点火的温度,于是又过渡到一个新阶段--氦燃烧阶段。
在恒星中心发生氦点火前,引力收缩以使它的密度达到了103g.cm-3的量级,这时气体的压力对温度的依赖很弱,那么核反应释放的能量将使温度升高,而温度升高反过来又加剧核反应速率,于是一旦点火,很快就会燃烧的十分剧烈,以至于爆炸,这种方式的点火称为"闪?quot;,因此在现象上会看到恒星光度突然上升到很大,后来又降的很低。
另一方面,当引力收缩时它的密度达不到103g.cm-3量级,此时气体的压力正比与温度,点火温度升高导致压力升高,核燃烧区就会有所膨胀,而膨胀导致温度降低,因此燃烧就能稳定的进行,所以这两种点火情况对演化进程的影响是不同的。
恒星在发生"氦闪光"之后又怎么演变呢?闪光使大量能量的释放很可能把恒星外层的氢气都吹走,剩下的是氦的核心区。氦核心区因膨胀而减小了密度,以后氦就有可能在其中正常的燃烧了。氦燃烧的产物是碳,在氦熄火后恒星将有一个碳核心区氦外壳,由于剩下的质量太小引力收缩已不能达到碳的点火温度,于是他就结束了以氦燃烧的演化,而走向热死亡。
由于引力塌缩与质量有关,所以质量不同的恒星在演化上是有差别的。
M<0.08M⊙的恒星:氢不能点火,它将没有氦燃烧阶段而直接走向死亡。
0.080.352.25在He反应初期,温度达到108K量级时,CNO循环产生的13C,17O能和4He发生新的(α,n)反应,形成16O和20Ne,在He反应进行了很长时间后,20Ne(p,γ) 21Na(β+,ν) 21Na中的21Na以及14N吸收两个4He形成的22Ne能发生(α,n)反应形成24Mg和25Mg等,这些反应作为能源并不重要,但发出的中子可进一步发生中子核反应。
4He反应结束后,当中心温度达到109K时,开始发生C,O,Ne 燃烧反应,这主要是C-C反应,O-O反应,以及20Ne的γ,α反应:
8→10M⊙4.恒星的终局
现在我们已经知道,对质量小于8→10M⊙的恒星,它会因不能到达下一级和点火温度而结束它的核燃烧阶段;对于质量更大的恒星,它将在核心区耗尽燃料之后结束它的核燃烧阶段,在这以后,恒星的最终归宿是什么?
一旦停止了核燃烧,恒星必定要发生引力收缩,这是因为恒星内部维持力学平衡的压力是与它的温度相联系的。因此,如果恒星在一?quot;最终"的平衡位形,它必须是一个"冷的"平衡位形,即它的压力与它的温度无关。
主序星核心H耗尽后,离开主序是阶段开始了它最后的历程。结局主要取决于质量。对于质量很小的星体由于质量小,物体内部的自引力并不重要,固体内部的平衡是正负离子间的净库仑引力于电子间的压力来达到平衡的。
当星体质量在大些,直到自引力不可忽略时,这时自引力加大了内部的密度和压力,压力的加大是物质发生压力电离,从而逐渐是固体的电约束瓦解,而过渡为等离子气体。加大质量,即加大密度,此时压力于温度无关,从而达到一种"冷的"平衡位形,等离子体内电子的动能一大足以在物质内部引起β衰变:
这里p是原子核中的质子,这样的反应大致在密度达到108 g.cm-3的时候,它将逐渐地是负离子体中的原子核变为富中子核,原子核中出现过多的中子,导致核结构松散,当密度超过4×1011g.cm-3是中子开始从原子核中分力出来,成为自由中子,自引力于中子间压力达到平衡。如果当质量变大使中子气体间压力已不能抵御物质自引力,而形成黑洞,但由于大多数恒星演化后阶段使得质量小于它的初始质量,例如恒星风,"氦闪光",超新星爆发等,它们会是恒星丢失一个很大的百分比质量,因此,恒星的终局并不是可以凭它的初始质量来判断的,它实际上取决于演化的进程。那么我们可以得出这样的结论。8→10M⊙以下的恒星最终间抛掉它的一部分或大部分质量而变成一个白矮星。8→10M⊙以上的恒星最终将通过星核的引力塌缩而变成中子星或黑洞。
5.结尾
现在观测到的恒星质量范围为0.1→60M⊙质量小于0.08M⊙的天体不能达到点火温度。因此,不发光,不能成为恒星。质量大于60M⊙的天体中心温度过高而不稳定,至今尚未发现。
通过讨论我们大体可以了解到恒星的演化进程,主要经历:气体云→塌缩阶段→主序星阶段→主序后阶段→终局阶段。这对我们进一步了解恒星的演化有很重要的意义。
在地球上遥望夜空,宇宙是恒星的世界。
恒星在宇宙中的分布是不均匀的。从诞生的那天起,它们就聚集成群,交映成辉,组成双星、星团、星系……
恒星是在熊熊燃烧着的星球。一般来说,恒星的体积和质量都比较大。只是由于距离地球太遥远的缘故,星光才显得那么微弱。
古代的天文学家认为恒星在星空的位置是固定的,所以给它起名“恒星”,意思是“永恒不变的星”。可是我们今天知道它们在不停地高速运动着,比如太阳就带着整个太阳系在绕银河系的中心运动。但别的恒星离我们实在太远了,以至我们难以觉察到它们位置的变动。
恒星发光的能力有强有弱。天文学上用“光度”来表示它。所谓“光度”,就是指从恒星表面以光的形式辐射出的功率。恒星表面的温度也有高有低。一般说来,恒星表面的温度越低,它的光越偏红;温度越高,光则越偏蓝。而表面温度越高,表面积越大,光度就越大。从恒星的颜色和光度,科学家能提取出许多有用信息来。
历史上,天文学家赫茨普龙和哲学家罗素首先提出恒星分类与颜色和光度间的关系,建立了被称为“赫-罗图的”恒星演化关系,揭示了恒星演化的秘密。“赫-罗图”中,从左上方的高温和强光度区到右下的低温和弱光区是一个狭窄的恒星密集区,我们的太阳也在其中;这一序列被称为主星序,90%以上的恒星都集中于主星序内。在主星序区之上是巨星和超巨星区;左下为白矮星区。
恒星诞生于太空中的星际尘埃(科学家形象地称之为“星云”或者“星际云”)。
恒星的“青年时代”是一生中最长的黄金阶段——主星序阶段,这一阶段占据了它整个寿命的90%。在这段时间,恒星以几乎不变的恒定光度发光发热,照亮周围的宇宙空间。
在此以后,恒星将变得动荡不安,变成一颗红巨星;然后,红巨星将在爆发中完成它的全部使命,把自己的大部分物质抛射回太空中,留下的残骸,也许是白矮星,也许是中子星,甚至黑洞……
就这样,恒星来之于星云,又归之于星云,走完它辉煌的一生。
绚丽的繁星,将永远是夜空中最美丽的一道景致。
恒星的运动
世间万物无不都在运动,恒星虽然看似在天空中恒定不动,其实它也有自己的运动。由于不同恒星运动的速度和方向不一样,它们在天空中相互之间的相对位置会发生变化,这种变化称为恒星的自行。全天恒星之中,包括那些肉眼看不见的很暗的恒星在内,自行最快的是巴纳德星,达到每年10.31角秒(1角秒是圆周上1度的3600分之一)。一般的恒星,自行要小得多,绝大多数小于1角秒。
恒星自行的大小并不能反映恒星真是运动速度的大小。同样的运动速度,距离远就看上去很慢,而距离近则看上去很快。因为巴纳德星离开我们很近,不到6光年,所以真实的运动速度不过88 km/s。
恒星的自行只反映了恒星在垂直于我们视线方向的运动,称为切向速度。恒星在沿我们视线方向也在运动,这一运动速度称为视向速度。巴纳德星的视向速度是 - 108 km/s (负的视向速度表示向我们接近,而正的视向速度表示离我们而去)。恒星在空间的有的速度,应是切向速度和视向速度的合成速度,对于巴纳德星,它的速度为139 km/s。
上述恒星的空间运动,由三个部分组成。第一是恒星绕银河系中心的圆周运动,这是银河系自转的反映。第二是太阳参与银河系自转运动的反映。在扣除这两种运动的反映之后,才真正是恒星本身的运动,称为恒星的本动。
空间分布
除了单独的恒星之外,联星系统可以是两颗或更多的恒星受到重力的约束而在轨道上互绕着,最普通的联星系统就是联星,但是三颗或更多恒星的系统也有被发现。而因为轨道要稳定的缘故,这些联星系统经常会形成阶级制度的共轨联星。也存在着更大的、被称为星团的集团:范围从只有几颗恒星的星协,到最庞大的拥有数十万颗恒星,称为球状星团的集团。
联星系统是长期处在特定重力场约束下的恒星集团,通常都由巨大的O和B型恒星组成,而且80%的恒星是联星系统是多星系统。但星单独恒星的部份因为更小的天体被发现而有所增加,仅有25%的红矮星被发现有伴星。因为85%的恒星是红矮星,所以在银河系内多数的恒星都是单独的。
恒星在宇宙中的分布是不均匀的,并且通常都是与星际间的气体、尘埃一起存在于星系中。一个典型的星系拥有数千亿颗的恒星,而再可观测的宇宙中星系的数量也超过一千亿个(1011)。过去相信恒星只存在余星系之中,但在星系际的空间中也已经发现恒星。天文学家估计宇宙至少有700垓(7×1022)颗恒星。
除了太阳之外,最靠近地球的恒星是半人马座的比邻星,距离是39.9兆(1012)公里,或4.2光年。光线从半人马座的比邻星要4.2年才能抵达地球。在轨道上绕行地球的航天飞机速度约为8公里/秒(时速约30,000公里),需要150,000年才能抵达那儿。像这样的距离,包括邻近太阳系的地区,在星系盘中是很典型的。在星系的中心和球状星团内,恒星的距离会更为接近,而在星晕中的距离则会更遥远。
由于相对于星系的中心,恒星的距离是非常开阔的,因此恒星的相互碰撞是非常罕见的。但是在球状星团或星系的中心,恒星碰撞则很平常。这样的碰撞会形成蓝掉队星,这些异常的恒星比在同一星团中光度相同的主序带恒星有着更高的表面温度。
恒星间距离非常遥远,天文学上一般用光年来量度恒星间的距离。而距离的测定则可以通过周年视差法、星团视差法、力学视差法、造父变星法等进行测量。
恒星命名
东方
每一颗恒星都要给它取一个名字,才能够便于研究和识别。中国在战国时代起已命名肉眼能辨别到的恒星或是以它所在星官命名,如天关星、北河二等;或是根椐传说命名,例如织女星(织女一)、牛郎星(河鼓二)、老人星等;或根据二十八宿排列顺序命名,例如心宿二等,构成一个不太严谨的独立体系。
西方
西方方面,1603年德国业余天文学家拜耳建议将每个星座中的恒星按照从亮到暗的顺序,以该星座的名称加上一个希腊字母顺序表示。例如猎户座α(参宿四)、猎户座β(参宿七)(但事实上猎户座β比猎户座α还要亮)。如果某个星座的恒星数目超过24个希腊字母,则接续采用小写的拉丁字母(a, b, c...),仍不足再使用大写拉丁字母(A, B, C...)。
英国首任的天文台长佛兰斯蒂德创立了数字命名法,将星座内肉眼可见的恒星由西向东、由北向南依序编号。
人类对恒星的观测和利用
哈勃望远镜拍摄的天狼星及其伴星照片人类对恒星的观测历史悠久。古埃及以天狼星在东方地平线的出现,预示尼罗河泛滥的日子。中国商朝就设立专门官员观测大火在东方的出现,确定岁首的时刻,与作物播种与收割并列在卜辞中。而中国明朝的航海家们则利用航海九星来判断方向。美国的阿波罗11号飞船设有光学定位仪,利用恒星来确定位置。
对恒星体积的测量可以通过干涉法和月掩星法测得恒星的角直径,从而求得体积。
恒星的质量可用开普勒第三定律或恒星光度与质量之间的关系进行测量。
恒星的两个重要的特征就是温度和绝对星等。大约100年前,丹麦的艾基纳和美国的诺里斯各自绘制了查找温度和亮度之间是否有关系的图,这张关系图被称为赫罗图,或者H—R图。在H-R图中,大部分恒星构成了一个在天文学上称作主星序的对角线区域。在主星序中,恒星的绝对星等增加时,其表面温度也随之增加。90%以上的恒星都属于主星序,太阳也是这些主星序中的一颗。巨星和超巨星处在H—R图的右侧较高较远的位置上。白矮星的表面温度虽然高,但亮度不大,所以他们只处在该图的中下方
恒星亮度排行表
NO 名称 英文星名 所属星座 视星等 距离(光年)
太阳 Sun -26.72
1 天狼星 Sirius 大犬座 -1.46 8.6
2 老人星 Canopus 船底座 -0.72 80
3 南门二 Rigel Kentaurus 半人马座 -0.30 4.3
4 大角星 Arcturus 牧夫座 -0.04 30
5 织女星 Vega 天琴座 0.03 25
6 五车二 Capella 御夫座 0.08 40
7 参宿七 Rigel 猎户座 0.12 700
8 南河三 Procyon 小犬座 0.38 11
9 水委一 Achernar 波江座 0.46 80
10 参宿四 Betelgeuse 猎户座 0.50 500
11 马腹一 Hadar 半人马座 0.61 330
12 牛郎星 Altair 天鹰座 0.77 16
13 十字架二 Acrux 南十字座 0.80 450
14 毕宿五 Aldebaran 金牛座 0.85 60
15心宿二 Antares 天蝎座 0.96 500
16 角宿一 Spica 室女座 0.97 350
17 北河三 Pollux 双子座 1.14 35
18 北落师门 Fomalhaut 南鱼座 1.16 22
19 天津四 Deneb 天鹅座 1.25 1800
20 十字架三 Mimosa 南十字座 1.25 500
21 轩辕十四 Regulus 狮子座 1.35 70
22 弧矢七 Adhara 大犬座 1.50 600
23 北河二 Castor 双子座 1.58 50
24 十字架一 Gacrux 南十字座 1.63 80
25 尾宿八 Shaula 天蝎座 1.63 300
26 参宿五 Bellatrix 猎户座 1.64 400
27 五车五 Elnath 金牛座 1.65 130
28 南船五 Miaplacidus 船底座 1.68 50
29 参宿二 Alnilam 猎户座 1.70 1300
30 鹤一 Al Nair 天鹤座 1.74 70
31 玉衡 Alioth 大熊座 1.77 60
32 天枢 Dubhe 大熊座 1.79 70
33 天船三 Mirfak 英仙座 1.80 500
34 天社一 Regor 船帆座 1.82 1000
35 箕宿三 Kaus Australis 人马座 1.85 120
36 弧矢一 Wezen 大犬座 1.86 2800
37 海石一 Avior 船底座 1.86 80
38 摇光 Alkaid 大熊座 1.86 150
39 尾宿五 Sargas 天蝎座 1.87 200
40 五车三 Menkalinan 御夫座 1.90 60
41 三角形三 Atria 南三角座 1.92 100
42 井宿三 Alhena 双子座 1.93 80
43 孔雀十一 Peacock 孔雀座 1.94 300
44 军市一 Mirzam 大犬座 1.98 700
45 星宿一 Alphard 长蛇座 1.98 110
46 娄宿三 Hamal 白羊座 2.00 70
47 北极星 Polaris 小熊座 2.02 400
48 斗宿四 Nunki 人马座 2.02 200
49 土司空 Diphda 鲸鱼座 2.04 60
50 参宿一 Alnitak 猎户座 2.05 1300
行星
行星通常指自身不发光的球体,环绕着恒星的天体。一般来说行星需具有一定质量,行星的质量要足够的大(相对于月球)且近似于圆球状,自身不能像恒星那样发生核聚变反应。2007年5月,麻省理工学院一组太空科学研究队发现了宇宙中最热的行星(摄氏2040度C)。
如何定义行星这一概念在天文学上一直是个备受争议的问题。国际天文学联合会大会2006年8月24日通过了“行星”的新定义,这一定义包括以下三点:
1、必须是围绕恒星运转的天体;
2、质量必须足够大,它自身的吸引力必须和自转速度平衡使其呈圆球状;
3、必须清除轨道附近区域,公转轨道范围内不能有比它更大的天体。
一般来说,行星的直径必须在800公里以上,质量必须在5亿亿吨以上。
按照这一定义,目前太阳系内有8颗行星,分别是:水星、金星、地球、火星、木星、土星、天王星、海王星。原先被认为是冥王星卫星的“卡戎”和一颗暂时编号“2003UB313”(齐娜)的天体。国际天文学联合会下属的行星定义委员会称,不排除将来太阳系中会有更多符合标准的天体被列为行星。目前在天文学家的观测名单上有可能符合行星定义的太阳系内天体就有10颗以上。
在新的行星标准之下,行星定义委员会还确定了一个新的次级定义——“类冥王星”。这是指轨道在海王星之外、围绕太阳运转周期在200年以上的行星。在符合新定义的12颗太阳系行星中,冥王星、“卡戎”和“2003UB313”都属于“类冥王星”。
天文学家认为,“类冥王星”的轨道通常不是规则的圆形,而是偏心率较大的椭圆形。这类行星的来源,很可能与太阳系内其他行星不同。随着观测手段的进步,天文学家还有可能在太阳系边缘发现更多大天体。未来太阳系的行星名单如果继续扩大,新增的也将是“类冥王星”。
行星是自身不发光的,环绕着恒星的天体。一般来说行星需要具有一定的质量,行星的质量要足够的大,以至于它的形状大约是圆球状,质量不够的被成为小行星。行星的名字来自于它们的位置在天空中不固定,就好像它们在行走一般。
太阳系内的肉眼可见的5颗行星水星,金星,火星,木星,土星,人类经过千百年的探索,到16世纪哥白尼建立日心说后才普遍认识到:地球是绕太阳公转的行星之一,而包括地球在内的八大行星则构成了一个围绕太阳旋转的行星系── 太阳系的主要成员。行星本身一般不发光,以表面反射太阳光而发亮。在主要由恒星组成的天空背景上,行星有明显的相对移动。离太阳最近的行星是水星,以下依次是金星、地球、火星、木星、土星、天王星、海王星。从行星起源于不同形态的物质出发,可以把九大行星分为三类:类地行星(包括水、金、地、火)、巨行星(木、土)及远日行星(天王、海王)。行星环绕太阳的运动称为公转,行星公转的轨道具有共面性、同向性和近圆性三大特点。所谓共面性,是指九大行星的公转轨道面几乎在同一平面上;同向性,是指它们朝同一方向绕太阳公转;而近圆性是指它们的轨道和圆相当接近。
在一些行星的周围,存在围绕行星运转的物质环,由大量小块物体(如岩石,冰块等)构成,因反射太阳光而发亮,称为行星环。20世纪70年代之前,人们一直以为唯独土星有光环,以后相继发现天王星和木星也有光环,这为研究太阳系起源和演化提供了新的信息。
卫星是围绕行星运行的天体,月亮就是地球的卫星。卫星反射太阳光,但除了月球以外,其它卫星的反射光都非常微弱。卫星在大小和质量方面相差悬殊,它们的运动特性也很不一致。太阳系中,除了水星和金星以外,其它的行星各自都有数目不等的卫星。
在火星与木星之间分布着数十万颗大小不等、形状各异的小行星,沿着椭圆轨道绕太阳运行,这个区域称之为小行星带。此外,太阳系中还有数量众多的彗星,至于飘浮在行星际空间的流星体就更是无法计数了。
这个小行星带和太阳的距离为1.7~4.0天文单位,其中天体的公转周期为3~6年。曾经一度认为小行星带是一颗行星破裂后的碎片,但现在看来,小行星更可能是形成了行星的那类太空碎石,所以小行星带是演化失败的行星,而不是炸碎的行星。
尽管太阳系内天体品种很多,但它们都无法和太阳相比。太阳是太阳系光和能量的源泉。也是太阳系中最庞大的天体,其半径差不多是地球半径的109倍,或者说是地月距离的1.8倍。太阳的质量比地球大33万倍,占到太阳系总质量的99.8%,是整个太阳系的质量中心,它以自己强大的引力将太阳系里的所有天体牢牢控制在其周围,使它们不离不散,井然有序地绕自己旋转。同时,太阳又作为一颗普通的恒星,带领它的成员,万古不息地绕银河系的中心运动。
(1)类地行星:水星,金星,地球,火星
顾名思义,类地行星的许多特性与地球相接近,它们离太阳相对较近,质量和半径都较小,平均密度则较大。类地行星的表面都有一层硅酸盐类岩石组成的坚硬壳层,有着类似地球和月球的各种地貌特征。对于没有大气的星球(如水星), 其外貌类似于月球,密布着环形山和沟纹;而对于像有浓密大气的金星,则其表面地形更像地球。
星早在史前就已经被人类发现了。后来人类了解到,地球本身也是一颗行星。
(2)带光环的巨行星和遥远的远日行星
木星和土星是行星世界的巨人,称为巨行星。它们拥有浓密的大气层,在大气之下却并没有坚实的表面,而是一片沸腾着的氢组成的"汪洋大海"。所以它们实质上是液态行星。
天王星,海王星,冥王星这三颗遥远的行星称为远日行星,是在望远镜发明以后才被发现的。它们拥有主要由分子氢组成的大气,通常有一层非常厚的甲烷冰、氨冰之类的冰物质覆盖在其表面上,再以下就是坚硬的岩核。
行星的产生
过去说法是:在太阳系形成初期,99%以上的物质向中心聚合成为太阳,周围还有部分散在的物质碎片围绕着太阳旋转,经过很长一段时间的碰撞和引力作用,散在的碎片逐渐聚合成了九大行星,但那时的地球只是一团混沌的物质,又经过了几十万年,物质逐渐冷却凝固,形成了地球的初步形态,再经过几十万年,由于地球的引力作用,由地球内部化学反应所产生的气体喷出后被保存在地球周围,形成了大气层,并由氢气和氧气化合成了水,再然后经过太阳的能量辐射,地球本身的电场、磁场作用和适宜的生存环境,由水中产生了有机物,也就是一切生命的祖先……
现在最新的研究认为:行星是从黑洞中产生的.
并为此找到了确凿的证据:银河系中央的小型黑洞能够超速“喷射”行星。在此之前,科学家认为只有特大质量黑洞才能以超速喷射行星。
研究人员称,实际上小型黑洞要比特大质量黑洞喷射更多数量的行星。1988年,美国洛斯?阿拉莫斯国家实验室物理学者杰克---希尔斯预言,银河系中央的特大质量黑洞能破坏双子行星平衡,束缚一颗行星,并以超高速将另一颗行星喷射出银河系。自2004年以来,天文学家共发现9颗被特大质量黑洞高速排斥的行星,他们推测这种特大质量黑洞的质量是太阳的360万倍。然而,美国哈佛--史密森天文物理中心赖安---奥利里和阿维---利奥伯从事的研究表明,银河系中央许多小型黑洞喷射出大量行星。
这些小型黑洞的质量大约只有太阳的10倍,一些研究认为银河系中央至少有25000个小型黑洞围绕在特大质量黑洞附近。当某些小型黑洞将行星喷射出银河系时,它们会进一步地靠近特大质量黑洞。利奥伯说,“小型黑洞比特大质量黑洞排斥喷射行星的速度更快!研究被喷射行星的轨迹和速度将有助于天文学家测定多少黑洞会喷射行星以及它们是如何排斥喷射行星的。”同时,他们也承认开展此项研究是很不容易的,现有的太空望远镜无法观测到银河系中央特大质量黑洞区域,该区域浓缩存在着许多小型黑洞。
研究人员推测,被特大质量喷射的行星速度达到709公里/秒,它们在银河系引力束缚下速度可能会更慢,估计这些行星被喷射时的初始速度达到1200公里/秒。然而,被小型黑洞喷射的行星速度要更快,行星在小型黑洞的排斥作用下可达到2000公里/秒速度脱离银河系.
冥王星失去行星地位
位居太阳系九大行星末席70多年的冥王星,自发现之日起地位就备受争议。经过天文学界多年的争论以及本届国际天文学联合会大会上数天的争吵,冥王星终于“惨遭降级”,被驱逐出了行星家族。从此之后,这个游走在太阳系边缘的天体将只能与其他一些差不多大的“兄弟姐妹”一道被称为“矮行星”。
2006年8月24日,根据国际天文学联合会大会11时通过的新定义,“行星”指的是围绕太阳运转、自身引力足以克服其刚体力而使天体呈圆球状、并且能够清除其轨道附近其他物体的天体。按照新的定义,太阳系行星将包括水星、金星、地球、火星、木星、土星、天王星和海王星,它们都是在1900年以前被发现的。
根据新定义,同样具有足够质量、呈圆球形,但不能清除其轨道附近其他物体的天体被称为“矮行星”。冥王星是一颗矮行星。其他围绕太阳运转但不符合上述条件的物体被统称为“太阳系小天体”。
从2006年8月24日11起,新的太阳系八大行星分别是:金星、木星、水星、火星、土星、地球、天王星和海王星。
新的天文发现不断使“九大行星”的传统观念受到质疑。天文学家先后发现冥王星与太阳系其他行星的一些不同之处。冥王星所处的轨道在海王星之外,属于太阳系外围的柯伊伯带,这个区域一直是太阳系小行星和彗星诞生的地方。20世纪90年代以来,天文学家发现柯伊伯带有更多围绕太阳运行的大天体。比如,美国天文学家布朗发现的“2003UB313”,就是一个直径和质量都超过冥王星的天体。
行星是如何形成的呢?在一个恒星边上,可能吸收了比较多的宇宙灰尘聚集,拿太阳举例:太阳大约在40亿年前,就吸收很多灰尘,灰尘之间互相碰撞,粘到一起。长期以来,出现了大量的行星胚叫做星子,当时至少有几十亿的星子围绕太阳运动。星子之间作用规律是:两个星子如果大小差距悬殊,并且彼此的速度不大,碰撞以后,小星子就会被大星子吸引而被吃掉。这样,大的星子越来越大。如果两个星子大小差不多,彼此速度很大,他们碰撞后就会破裂,形成许多小块,而后,这些小块又陆续被大星子吃掉。这样,星子越来越少。大行星就是当时比较大的星子,无数小行星就是当时互相吞并时期没有被吃的幸运儿。
新的行星定义引发争议
就在行星的新定义公布后不久,12名天文学家联名在英国《自然》杂志网络版公开发表了《抗议冥王星降级请愿书》,严重质疑数百位天文学家通过投票表决的方式让冥王星离开“行星宝座”的做法。按照新的行星定义的第三条来要求,地球可能也会被开除。
12位天文学家在《自然》网络版发表《抗议冥王星降级请愿书》
2006年8月31日,12名天文学家联名在英国《自然》杂志网络版公开发表了《抗议冥王星降级请愿书》,严重质疑数百位天文学家通过投票表决的方式让冥王星离开“行星宝座”的做法。天文学家们还表示,第26届国际天文学联合会上对新的行星的定义也不完全准确。
据称,投票天文学家只占全球天文学家5%,有专家称“这是个草率的决议”。
据了解,第26届国际天文学联合会会期为10天,很多专家由于经费问题,没有等到最后投票的时刻已经先行离开,实际参加冥王星地位表决的专家只有几百人,这样的投票规模遭到了联名情愿的天文学家的质疑。在请愿书中,这些科学家指出,参加布拉格会议投票的天文学家仅仅占全球天文学家的不足百分之五。这样的比例作出这样重大的决定实在缺乏说服力。
这12名签名的天文学家包括美国宇航局“新地平线号”负责人阿兰·斯登、美国行星科学学院的马克·塞克斯等等。他们还在请愿书倡议反对冥王星降级的天文学家继续签名。阿兰·斯登在接受媒体采访时说:“对该问题的争论不会因24号得决议停止。因为有来自75个国家2500多位的国际天文学会,只有 300人参与了投票。这是个草率的决议,是糟糕的科学。一切都没有结束。”
运用动力学的标准来定义行星会出新问题
刚刚参加完此次会议回国的北京天文馆馆长朱进博士向本报记者介绍说,这次国际天文学联合会的一项很重要的决定,就是把行星和太阳系的其他天体分为三个不同的类别来定义。
行星的定义有三个要求:一是位于围绕太阳的轨道上;二是有足够大的质量使其表面达到流体静力平衡的形状(近于球形);最后是已经清空了其轨道附近的区域。符合这些要求的也只有1900年前发现的8个行星。
相对于表决程序上的欠妥,参加请愿的科学家最不能接受的正是新的行星定义。
对于行星定义的第二条,请愿的天文学家认为,新的定义运用的是动力学而不是物质本身的特性,这种特性是决定能否成为一颗行星的必要条件。而且这个结果将影响到天文学其他体系的定义,比如恒星、星系、星云甚至小行星。因为在这些体系的定义中,动力学并不是决定性因素。
按照新的行星定义的第三条来要求,地球可能也会被开除。
这些天文学家指出,如果按照新定义的第三条,那么像是地球、木星这样的行星也不符合定义,也要被“开除”。新的定义第三条说,行星要有足够引力以清空其轨道附近的区域。如果按照这样的定义,地球、土星、木星它们的轨道之间都有很多的小行星,这样它们就不能被认为是“清空轨道附近区域”。
除这些签名的天文学家外,参加表决会议的威廉斯大学天文学家杰·帕萨克弗也仍然坚持冥王星是一颗行星。他说:“这次会议的精神在于对未来科学发现和行为的规范,但不应是对过去的否定。”
洛威尔天文台主任米李斯也表示,他希望的是增加新的行星,而不是排除冥王星。
附:1、行星的定义:
a.天体;b.围绕恒星运转;
c.自身引力足以克服其刚体力而使天体呈圆球状;d.能够清除其轨道附近的其它物体。
太阳系内符合这一行星新定义的包括:
水星、金星、地球、火星、木星、土星、天王星、海王星,总计八颗。
2、矮行星的定义:
a.天体;b.围绕太阳运转;
c.自身引力足以克服其刚体力而使天体呈圆球状;
d.不能够清除其轨道附近的其它物体;e.不是卫星。
太阳系内符合这一定义的包括:
谷神星、冥王星、齐娜,总计三颗。
附资料
谷神星:直径约950公里,平均距日距离约4.2亿公里,公转周期约4.6年。原属于小行星的范畴。
冥王星:直径约2400公里,平均距日距离约59亿公里,公转周期约248年。冥王星有三颗卫星,卡戎、S/2005 P1、S/2005 P2,后两颗卫星直径约50到60公里,公转周期为38天和25天。原属于九大行星的范畴。
齐娜:天文编号为2003UB313,齐娜是它的昵称,直径在2300到2500公里之间,平均距日距离约160亿公里,公转周期约560年。2003年新发现的天体,正是由于它的发现,导致太阳系天体类别划分的争论。(既然冥王星都是行星,那么齐娜就应该成为太阳系的第十大行星)
卡戎:直径1200公里,围绕冥王星旋转,公转周期等于冥王星的自转周期为6.4天。虽然卡戎的直径比谷神星还要大,但它是冥王星的卫星,所以不属于矮行星的范围。
3、太阳系小天体的定义:
a.天体;b.围绕太阳运转;c.不符合行星和矮行星的定义。
原来的小行星、彗星等全部归入太阳系小天体的范畴。
小行星:小行星 asteroid,minor planet 或 planetoid
小行星是太阳系内类似行星环绕太阳运动,但体积和质量比行星小得多的天体。
至今为止在太阳系内一共已经发现了约70万颗小行星,但这可能仅是所有小行星中的一小部分,只有少数这些小行星的直径大于100千米。到1990年代为止最大的小行星是谷神星,但近年在柯伊伯带(Kuiper Belt)内发现的一些小行星的直径比谷神星要大,比如2000年发现的伐楼那(Varuna)的直径为900千米,2002年发现的夸欧尔(Quaoar)直径为1280千米,2004年发现的2004 DW的直径甚至达1800千米。2003年发现的塞德娜(小行星90377)位于柯伊伯带以外,其直径约为1500千米。
根据估计,小行星的数目大概可能会有50万。最大的小行星直径也只有1000 公里左右,微型小行星则只有鹅卵石一般大小。
直径超过 240 公里的小行星约有 16 个。它们都位于地球轨道内侧到土星的轨道外侧的太空中。而绝大多数的小行星都集中在火星与木星轨道之间的小行星带。其中一些小行星的运行轨道与地球轨道相交,曾有某些小行星与地球发生过碰撞。
小行星是太阳系形成后的物质残余。有一种推测认为,它们可能是一颗神秘行星的残骸,这颗行星在远古时代遭遇了一次巨大的宇宙碰撞而被摧毁。但从这些小行星的特征来看,它们并不像是曾经集结在一起。如果将所有的小行星加在一起组成一个单一的天体,那它的直径只有不到 1500 公里——比月球的半径还小。
彗星:除了离太阳很远时以外,彗星的长长的明亮稀疏的彗尾,在过去给人们这样的印象,即认为彗星很靠近地球,甚至就在我们的大气范围之内。1577年第谷指出当从地球上不同地点观察时,彗星并没有显出方位不同:因此他正确地得出它们必定很远的结论。彗星属于太阳系 小天体。每当彗星接近太阳时,它的亮度迅速地增强。对离太阳相当远的彗星的观察表明它们沿着被高度拉长的椭圆运动,而且太阳是在这椭圆的一个焦点上,与开普勒第一定律一致。彗星大部分的时间运行在离太阳很远的地方,在那里它们是看不见的。只有当它们接近太阳时才能见到。大约有40颗彗星公转周期相当短(小于100年),因此它们作为同一颗天体会相继出现。
历史上第一个被观测到相继出现的同一天体是哈雷彗星,牛顿的朋友和捐助人哈雷(1656一1742年)在1705年认识到它是周期性的。它的周期是76年。历史记录表明自从公元前240年也可能自公元前466年来,它每次通过太阳时都被观测到了。它最近一次是在1986年通过的。离太阳很远时彗星的亮度很低,而且它的光谱单纯是反射阳光的光谱。当彗星进入离太阳8个天文单位以内时,它的亮度开始迅速增长并且光谱急剧地变化。科学家看到若干属于已知分子的明亮谱线。发生这种变化是因为组成彗星的固体物质(彗核)突然变热到足以蒸发并以叫做彗发的气体云包围彗核。太阳的紫外光引起这种气体发光。彗发的直径通常约为105千米,但彗尾常常很长,达108千米或1天文单位。
科学家估计一般接近太阳距离只有几个天文单位的彗星将在几千年内瓦解。公元1066年,诺曼人入侵英国前夕,正逢哈雷彗星回归。当时,人们怀有复杂的心情,注视着夜空中这颗拖着长尾巴的古怪天体,认为是上帝给予的一种战争警告和预示。后来,诺曼人征服了英国,诺曼统帅的妻子把当时哈雷彗星回归的景象绣在一块挂毯上以示纪念。中国民间把彗星贬称为“扫帚星”、“灾星”。像这种把彗星的出现和人间的战争、饥荒、洪水、瘟疫等灾难联系在一起的事情,在中外历史上有很多。彗星是在扁长轨道(极少数在近圆轨道)上绕太阳运行的一种质量较小的云雾状小天体。
小行星
在1801年1月的第一天,Giuseppe Piazzi发现了一个天体,起初他认为这不会又是一颗彗星。但当它的运行轨道被测定后,却发现它不是彗星,而更像是一颗小型的行星。Piazzi称它为Ceres(刻瑞斯,谷类和耕作女神),是西西里岛的谷粒美人。另三颗小天体也在相继的几年中被发现(它们分别是Pallas, Vesta, and Juno)。到了十九世纪来已发现了几百颗.至今已发现了7000多颗小行星,现在这个数字仍以每年几百颗的速度增长。毫无疑问,必定还有成千上百的小行星由于太小而无法在地球上观察到。就现在已知的,有26颗小行星的直径大于200千米。对这些可见的小行星的观测数据已基本完成,就我们所知,大约99%的小行星的直径大于100千米。对那些直径在10到100千米之间的小行星的编录工作已完成了一半。但我们知道还有一些更小的,或许存在着近百万颗直径为1千米左右的小行星。所有小行星的质量之和比月球的质量还小。
【概述】
小行星是太阳系内类似行星环绕太阳运动,但体积和质量比行星小得多的天体。
太阳系中,沿椭圆形轨道绕太阳运行而体积小,从地球上肉眼不能看到的行星。大部分小行星的运行轨道在火星和木星之间。
至今为止在太阳系内一共已经发现了约70万颗小行星,但这可能仅是所有小行星中的一小部分,只有少数这些小行星的直径大于100千米。到1990年代为止最大的小行星是谷神星,但近年在古柏带内发现的一些小行星的直径比谷神星要大,比如2000年发现的伐楼拿(Varuna)的直径为900千米,2002年发现的夸欧尔(Quaoar)直径为1280千米,2004年发现的2004 DW的直径甚至达1800千米。2003年发现的塞德娜(小行星90377)位于古柏带以外,其直径约为1500千米。
根据估计,小行星的数目大概可能会有50万。最大的小行星直径也只有1000 公里左右,微型小行星则只有鹅卵石一般大小。
直径超过 240 公里的小行星约有 16 个。它们都位于地球轨道内侧到土星的轨道外侧的太空中。而绝大多数的小行星都集中在火星与木星轨道之间的小行星带。其中一些小行星的运行轨道与地球轨道相交,曾有某些小行星与地球发生过碰撞。
小行星是太阳系形成后的物质残余。有一种推测认为,它们可能是一颗神秘行星的残骸,这颗行星在远古时代遭遇了一次巨大的宇宙碰撞而被摧毁。但从这些小行星的特征来看,它们并不像是曾经集结在一起。如果将所有的小行星加在一起组成一个单一的天体,那它的直径只有不到 1500 公里——比月球的半径还小。
由于小行星是早期太阳系的物质,科学家们对它们的成份非常感兴趣。宇宙探测器经过小行星带时发现,小行星带其实非常空旷,小行星与小行星之间分隔得非常遥远。在1991年以前所获的小行星数据仅通过基于地面的观测。1991年10月,伽利略号木星探测器访问了951 Gaspra小行星,从而获得了第一张高分辨率的小行星照片。1993年8月,伽利略号又飞经了243 Ida小行星,使其成为第二颗被宇宙飞船访问过的小行星。 Gaspra和Ida小行星都富含金属,属于S型小行星。
我们对小行星的所知很多是通过分析坠落到地球表面的太空碎石。那些与地球相撞的小行星称为流星体。当流星体高速闯进我们的大气层,其表面因与空气的摩擦产生高温而汽化,并且发出强光,这便是流星。如果流星体没有完全烧毁而落到地面,便称为陨星。
经过对所有陨星的分析,其中 92.8%的成分是二氧化硅(岩石),5.7%是铁和镍,剩余部分是这三种物质的混合物。含石量大的陨星称为陨石,含铁量大的陨星称为陨铁。因为陨石与地球岩石非常相似,所以较难辨别。
1997年 6月27日,NEAR探测器与253 Mathilde小行星擦肩而过。这次机遇使得科学家们第一次能近距离观察这颗富含碳的 C型小行星。此次访问由于NEAR探测器不是专门用来对其进行考察而成为唯一的一次访。NEAR是用于在1999年 1月对Eros小行星进行考察的。
天文学家们已经对不少小行星作了地面观察。一些知名的小行星有Toutais、Castalia、Vesta和Geographos等。对于小行星Toutatis、Castalia和Geographos,天文学家是在它们接近太阳时,在地面通过射电观察研究它们的。Vesta 小行星是由哈勃太空望远镜发现的。
小行星的发现同提丢斯- 波得定则的提出有密切联系,根据该定则,在距太阳距离为2.8 天文单位处应有一颗行星,1801年元旦皮亚奇果真在该处发现了第一颗小行星谷神星。在随后的几年中同谷神星轨道相近的智神星,婚神星,灶神星相继被发现。天文照相术的引进和闪视比较仪的使用,使得小行星的的年发现率大增,到1940年具有永久性编号的小行星已经有1564颗。其中,德国天文学家恩克和汉森因长于轨道计算,沃尔夫和赖因穆特在观测上有许多发现而贡献尤大。
小行星的命名权属于发现者。早期喜欢用女神的名字,后来改用人名,地名,花名乃至机构名的首字母缩写词来命名。有些小行星群和小行星特别著名,如脱罗央群,阿波罗群,伊卡鲁斯,爱神星,希达尔戈等。按轨道根数作统计分析,轨道倾角在约5 度和偏心率约0.17处的小行星数目最多。柯克伍德缝是按小行星平均日心距离统计得到的最著名的分布特征。小行星数N 与平均冲日星等m 之间有统计关系logN=0.39m-3.3,小行星直径d 同绝对星等g 之间满足统计公式logd(公里)=3.7-0.2g。小行星数随直径的分布在直径约30公里附近出现间断。
【研究】
1760年有人猜测太阳系内的行星离太阳的距离构成一个简单的数字系列。按这个系列在火星和木星之间有一个空隙,这两颗行星之间也应该有一颗行星。18世纪末有许多人开始寻找这颗未被发现的行星。著名的提丢斯-波得定则就是其中一例。当时欧洲的天文学家们组织了世界上第一次国际性的科研项目,在哥达天文台的领导下全天被分为24个区,欧洲的天文学家们系统地在这24个区内搜索这颗被称为“幽灵”的行星。但这个项目没有任何成果。
1801年1月1日晚上,朱塞普·皮亚齐在西西里岛上巴勒莫的天文台内在金牛座里发现了一颗在星图上找不到的星。皮亚齐本人并没有参加寻找“幽灵”的项目,但他听说了这个项目,他怀疑他找到了“幽灵”,因此他在此后数日内继续观察这颗星。他将他的发现报告给哥达天文台,但一开始他称他找到了一颗彗星。此后皮亚齐生病了,无法继续他的观察。而他的发现报告用了很长时间才到达哥达,此时那颗星已经向太阳方向运动,无法再被找到了。
高斯此时发明了一种计算行星和彗星轨道的方法,用这种方法只需要几个位置点就可以计算出一颗天体的轨道。高斯读了皮亚齐的发现后就将这颗天体的位置计算出来送往哥达。奥伯斯于1801年12月31日晚重新发现了这颗星。后来它获得了谷神星这个名字。1802年奥伯斯又发现了另一颗天体,他将它命名为智神星。1803年婚神星,1807年灶神星被发现。一直到1845年第五颗小行星义神星才被发现,但此后许多小行星被很快地发现了。到1890年为止已有约300颗已知的小行星了。
1890年摄影术进入天文学,为天文学的发展给予了巨大的推动。此前要发现一颗小行星天文学家必须长时间记录每颗可疑的星的位置,比较它们与周围星位置之间的变化。但在摄影底片上一颗相对于恒星运动的小行星在底片上拉出一条线,很容易就可以被确定。而且随着底片的感光度的增强它们很快就比人眼要灵敏,即使比较暗的小行星也可以被发现。摄影术的引入使得被发现的小行星的数量增长巨大。1990年电荷藕合元件摄影的技术被引入,加上计算机分析电子摄影的技术的完善使得更多的小行星在很短的时间里被发现。今天已知的小行星的数量约达22万。
一颗小行星的轨道被确定后,天文学家可以根据对它的亮度和反照率的分析来估计它的大小。为了分析一颗小行星的反照率一般天文学家既使用可见光也使用红外线的测量。但这个方法还是比较不可靠的,因为每颗小行星的表面结构和成分都可能不同,因此对反照率的分析的错误往往比较大。
比较精确的数据可以使用雷达观测来取得。天文学家使用射电望远镜作为高功率的发生器向小行星投射强无线电波。通过测量反射波到达的速度可以计算出小行星的距离。对其它数据(衍射数据)的分析可以推导出小行星的形状和大小。此外,观测小行星掩星也可以比较精确地推算小行星的大小。
现在也已经有一系列非载人宇宙飞船在一些小行星的附近对它们进行过研究:
1991年伽利略号在它飞往木星的路程上飞过小行星951,1993年飞过小行星243。
NEAR号于1997年飞过小行星253并于2001年在小行星433登陆。
1999年深空1号在26千米远处飞掠小行星9969。
2002年星尘号在3300千米远处飞掠小行星5535。
由于小行星是从早期太阳系残留下来的物质,科学家对它们的构成非常感兴趣。宇宙探测器在经过小行星带时发现,小行星带其实非常空旷,小行星与小行星之间的距离非常遥远。1991 年以前,人们都是通过地面观测以获得小行星的数据。1991 年 10 月,伽利略号木星探测器访问了 951 Gaspra 小行星,拍摄了第一张高分辨率的小行星照片。1993 年 8 月,伽利略号又飞临 243 Ida 小行星,使其成为第二颗被宇宙飞船访问过的小行星。Gaspra 和 Ida 小行星都富含金属,属于 S 型小行星。1997年 6月27日,NEAR 探测器与 253 Mathilde 小行星擦肩而过。这次难得的机会使得科学家们第一次能够近距离地观察这颗富含碳的 C 型小行星。由于 NEAR 探测器并不是专用对其进行考察的,这次访问成为至今对它进行的唯一的一次访问。NEAR是用于在 1999年 1 月对 Eros 小行星进行考察的。
天文学家们已经对不少小行星作了地面观察。一些知名的小行星有 Toutais、Castalia、Vesta 和 Geographos 等。对于小行星 Toutatis、Castalia 和Geographos,天文学家是在它们接近太阳时,在地面通过射电观察研究它们的。Vesta 小行星是由哈勃太空望远镜发现的。
【命名】
C-类小行星253 Mathilde小行星的名字由两个部分组成:前面的一部分是一个永久编号,后面的一部分是一个名字。每颗被证实的小行星先会获得一个永久编号,发现者可以为这颗小行星建议一个名字。这个名字要由国际天文联会批准才被正式采纳,原因是因为小行星的命名有一定的常规。因此有些小行星没有名字,尤其是在永久编号在上万的小行星。假如小行星的轨道可以足够精确地被确定后,那么它的发现就算是被证实了。在此之前,它会有一个临时编号,是由它的发现年份和两个字母组成,比如2004 DW。
第一颗小行星是皮亚齐于1801年在西西里岛上发现的,他给这颗星起名为谷神·费迪南星。前一部分是以西西里岛的保护神谷神命名的,后一部分是以那波利国王费迪南四世命名的。但国际学者们对此不满意,因此将第二部分去掉了。因此第一颗小行星的正式名称是小行星1号谷神星。
此后发现的小行星都是按这个传统以罗马或希腊的神来命名的,比如智神星、灶神星、义神星等等。
但随着越来越多的小行星被发现,最后古典神的名字都用光了。因此后来的小行星以发现者的夫人的名字、历史人物或其他重要人物、城市、童话人物名字或其它神话里的神来命名。比如小行星216是按埃及女王克丽欧佩特拉命名的,小行星719阿尔伯特是按阿尔伯特·爱因斯坦命名的,小行星17744是按女演员茱迪·福斯特命名的,小行星1773是按格林童话中的一个侏儒命名的,等等。截至2007年3月6日,已计算出轨道(即获临时编号)的小行星共679,373颗(查询),获永久编号的小行星共150,106颗(查询),获命名的小行星共12,712颗。
【形成】
爱达小行星一开始天文学家以为小行星是一颗在火星和木星之间的行星破裂而成的,但小行星带内的所有小行星的全部质量
比月球的质量还要小。今天天文学家认为小行星是太阳系形成过程中没有形成行星的残留物质。木星在太阳系形成时的质量增长最快,它防止在今天小行星带地区另一颗行星的形成。小行星带地区的小行星的轨道受到木星的干扰,它们不断碰撞和破碎。其它的物质被逐出它们的轨道与其它行星相撞。大的小行星在形成后由于铝的放射性同位素26Al(和可能铁的放射性同位素60Fe)的衰变而变热。重的元素如镍和铁在这种情况下向小行星的内部下沉,轻的元素如硅则上浮。
这样一来就造成了小行星内部物质的分离。在此后的碰撞和破裂后所产生的新的小行星的构成因此也不同。有些这些碎片后来落到地球上成为陨石。
【结构】
通过光谱分析所得到的数据可以证明小行星的表面组成很不一样。按其光谱的特性小行星被分几类:
C-小行星:这种小行星占所有小行星的75%,因此是数量最多的小行星。C-小行星的表面含碳,反照率非常低,只有0.05左右。一般认为C-小行星的构成与碳质球粒陨石(一种石陨石)的构成一样。一般C-小行星多分布于小行星带的外层。
S-小行星:这种小行星占所有小行星的17%,是数量第二多的小行星。S-小行星一般分布于小行星带的内层。S-小行星的反照率比较高,在0.15到0.25之间。它们的构成与普通球粒陨石类似。这类陨石一般由硅化物组成。
M-小行星:剩下的小行星中大多数属于这一类。这些小行星可能是过去比较大的小行星的金属核。它们的反照率与S-小行星的类似。它们的构成可能与镍-铁陨石类似。
E-小行星:这类小行星的表面主要由顽火辉石构成,它们的反照率比较高,一般在0.4以上。它们的构成可能与顽火辉石球粒陨石(另一类石陨石)相似。
V-小行星:这类非常稀有的小行星的组成与S-小行星差不多,唯一的不同是它们含有比较多的辉石。天文学家怀疑这类小行星是从灶神星的上层硅化物中分离出来的。灶神星的表面有一个非常大的环形山,可能在它形成的过程中V-小行星诞生了。
地球上偶尔会找到一种十分罕见的石陨石,HED-非球粒陨石,它们的组成可能与V-小行星相似,它们可能也来自灶神星。
G-小行星:它们可以被看做是C-小行星的一种。它们的光谱非常类似,但在紫外线部分G-小行星有不同的吸收线。
B-小行星:它们与C-小行星和G-小行星相似,但紫外线的光谱不同。
F-小行星:也是C-小行星的一种。它们在紫外线部分的光谱不同,而且缺乏水的吸收线。
P-小行星:这类小行星的反照率非常低,而且其光谱主要在红色部分。它们可能是由含碳的硅化物组成的。它们一般分布在小行星带的极外层。
D-小行星:这类小行星与P-小行星类似,反照率非常低,光谱偏红。
R-小行星:这类小行星与V-小行星类似,它们的光谱说明它们含较多的辉石和橄榄石。
A-小行星:这类小行星含很多橄榄石,它们,主要分布在小行星带的内层。
T-小行星:这类小行星也分布在小行星带的内层。它们的光谱比较红暗,但与P-小行星和R-小行星不同。
过去人们以为小行星是一整块完整单一的石头,但小行星的密度比石头低,而且它们表面上巨大的环形山说明比较大的小行星的组织比较松散。它们更象由重力组合在一起的巨大的碎石堆。这样松散的物体在大的撞击下不会碎裂,而可以将撞击的能量吸收过来。完整单一的物体在大的撞击下会被冲击波击碎。此外大的小行星的自转速度很慢。假如它们的自转速度高的话,它们可能会被离心力解体。今天天文学家一般认为大于200米的小行星主要是由这样的碎石堆组成的。而部分较小的碎片更成为一些小行星的卫星,例如:小行星87便拥有两颗卫星。
【轨道】
(1)小行星带的小行星
约90%已知的小行星的轨道位于小行星带中。小行星带是一个相当宽的位于火星和木星之间的地带。谷神星、智神星等首先被发现的小行星都是小行星带内的小行星。
(2)火星轨道内的小行星
火星轨道内的小行星总的来说分三群:
阿莫尔型小行星群:这一类小行星穿越火星轨道并来到地球轨道附近。其代表性的小行星是1898年发现的小行星433,这颗小行星可以到达离地球0.15天文单位的距离。1900年和1931年小行星433来到地球附近时天文学家用这个机会来确定太阳系的大小。1911年发现的小行星719后来又失踪了,一直到2000年它才重新被发现。这个小行星组的命名星小行星1221阿莫尔的轨道位于离太阳1.08到2.76天文单位,这是这个群相当典型的一个轨道。
阿波罗小行星群:这个小行星群的小行星的轨道位于火星和地球之间。这个组中一些小行星的轨道的偏心率非常高,它们的近日点一直到达金星轨道内。这个群典型的小行星轨道有1932年发现的小行星1862阿波罗,它的轨道在0.65到2.29天文单位之间。小行星69230在仅1.5月球距离处飞略地球。
阿登型小行星群:这个群的小行星的轨道一般在地球轨道以内。其命名星是1976年发现的小行星2062阿登。有些这个组的小行星的偏心率比较高,它们可能从地球轨道内与地球轨道向交。   这些小行星被统称为近地小行星。近年来对这些小行星的研究被加深,因为它们至少理论上有可能与地球相撞。比较有成绩的项目有林肯近地小行星研究计划(LINEAR)、近地小行星追踪(NEAT)和洛维尔天文台近地天体搜索计划(LONEOS)等。
(3)在其它行星的轨道上运行的小行星
在其它行星轨道的拉格朗日点上运行的小行星被称为特洛伊小行星。最早被发现的特洛伊小行星是在木星轨道上的小行星,它们中有些在木星前,有些在木星后运行。有代表性的木星特洛伊小行星有小行星588和小行星1172。1990年第一颗火星特洛伊小行星小行星5261被发现,此后还有其它四颗火星特洛伊小行星被发现。
土星和天王星之间的小行星
土星和天王星之间的小行星有一群被称为半人马小行星群的小行星,它们的偏心率都相当大。最早被发现的半人马小行星群的小行星是小行星2060。估计这些小行星是从柯伊伯带中受到其它大行星的引力干扰而落入一个不稳定的轨道中的。
柯伊伯带带的小行星:全称为艾吉沃斯-柯伊伯带(英语:Edgeworth-Kuiper belt;EKB,一般简称作柯伊伯带,或译作古柏带、库柏带等) 黄色点环为柯伊伯带(Kuiper Belt)
外海王星天体及类似天体:半人马小行星
外海王星天体
柯伊伯带
类QB1天体
类冥天体
2:1共振天体
黄道离散天体
欧特云 Oort
海王星以外的小行星属于柯伊伯带,在这里天文学家们发现了最大的小行星如小行星50000等。
水星轨道内的小行星(水内小行星)
虽然一直有人猜测水星轨道内也有一个小行星群,但至今为止这个猜测未能被证实。
[行成]
有一些近地小行星离距离地球很近,它们本来是一些小陨石但经过地球被引力吸住了,这是近地小行星.
卫 星
各种卫星概述
卫星是指在围绕一颗行星轨道并按闭合轨道做周期性运行的天然天体或人造天体。
[1]月球就是最明显的天然卫星的例子。在太阳系里,除水星和金星外,其他行星都有天然卫星。太阳系已知的天然卫星总数(包括构成行星环的较大的碎块)至少有160颗。天然卫星是指环绕行星运转的星球,而行星又环绕着恒星运转。就比如在太阳系中,太阳是恒星,我们地球及其它行星环绕太阳运转,月亮、土卫一、天卫一等星球则环绕着我们地球及其它行星运转,这些星球就叫做行星的天然卫星。木星的天然卫星第二多,其中17颗已得到确认,至少还有6颗尚待证实。天然卫星的大小不一,彼此差别很大。其中一些直径只有几千米大,例如,火星的两个小月亮,还有木星,土星,天王星外围的一些小卫星。还有几个却比水星还大,例如,土卫六、木卫三和木卫四,它们的直径都超过5200千米。
而随着现代科技的不断发展,人类研制出了各种人造卫星,这些人造卫星和天然卫星一样,也绕着行星(大部分是地球)运转。人造卫星[4]的概念可能始于1870年。第一颗被正式送入轨道的人造卫星是前苏联1957年发射的人卫1号。从那时起,已有数千颗环绕地球飞行。人造卫星还被发射到环绕金星、火星和月亮的轨道上。人造卫星用于科学研究,而且在近代通讯、天气预报、地球资源探测和军事侦察等方面已成为一种不可或缺的工具。
自1957年前苏联将世界第一颗人造卫星送入环地轨道以来,人类已经向浩瀚的宇宙中发射了大量的飞行器。据美国一个名为“关注科学家联盟”的组织近日公布的最新全世界卫星数据库显示,目前正在环绕地球飞行的共有795颗各类卫星,而其中一半以上属于世界上唯一的超级大国美国,它所拥有的卫星数量已经超过了其他所有国家拥有数量的总和,达413颗,军用卫星更是达到了四分之一以上。
太阳系卫星
太阳系内最大的卫星(超过3000公里)包括地球的卫星月球、木星的伽利略卫星木卫一(伊俄)、木卫二(欧罗巴)、木卫三(盖尼米得)、木卫四(卡利斯托)、土星的卫星土卫六(泰坦),以及海王星捕获的卫星海卫一(特赖登)。
各国首颗卫星
1、前苏联:1957年10月4日,世界上第一个人造地球卫星由前苏联发射成功。这个卫星在离地面900公里的高空运行;它每转一整周的时间是1小时35分钟,它的运行轨道和赤道平面之间所形成的倾斜角是65度。它是一个球形体,直径58公分,重83.6公斤。内装两部不断放射无线电信号的无线电发报机。其频率分别为20.005和40.002兆赫(波长分别为15和7.5公尺左右)。信号采用电报讯号的形式,每个信号持续时间约0.3秒。间歇时间与此相同。前苏联第一颗人造地球卫星的发射成功,揭开了人类向太空进军的序幕,大大激发了世界各国研制和发射卫星的热情。
2、美国:美国于1958年1月31日成功地发射了第一颗“探险者”-1号人造卫星。该星重8.22公斤,锥顶圆柱形,高203.2厘米,直径15.2厘米,沿近地点360.4公里、远地点2531公里的椭圆轨道绕地球运行,轨道倾角33.34°,运行周期114.8分钟。发射“探险者’-1号的运载火箭是“丘辟特”℃四级运载火箭。
3、法国:法国于1965年11月26日成功地发射了第一颗“试验卫星”-1(A-l)号人造卫星。该星重约42公斤,运行周期108.61分钟,近地点526.24公里、远地点1808.85公里的椭圆轨道运行,轨道倾角34.24°。发射A-1卫星的运载火箭为“钻石”tA号三级火箭,其全长18.7米,直径1.4米,起飞重量约18吨。
4、日本:日本于1970年2月11日成功地发射了第一颗人造卫星“大隅”号。该星重约9.4公斤,轨道倾角31.07°,近地点339公里,远地点5138公里,运行周期144.2分钟。发射“大隅”号卫星的运载火箭为“兰达”-45四级固体火箭,火箭全长16.5米,直径0.74米,起飞重量9.4吨。第一级由主发动机和两个助推器组成,推力分别为37吨和26吨;第二级推力为11.8吨;第三、四级推力分别为6.5吨和1吨。
5、中国:1970年4月24日,我国自行设计、制造的第一颗人造地球卫星“东方红”1号由“长征一号”运载火箭一次发射成功。该卫星直径约1米,重173公斤,运行轨道距地球最近点439公里,最远点2384公里,轨道平面和地球赤道平面的夹角68.5度,绕地球一周(运行周期)114分钟。卫星用20009兆周的频率,播送《东方红》乐曲。发射“东方红”1号卫星的远载火箭为“长征”1号三级运载火箭,火箭全长29,45米,直径2.25米,起飞重量81.6吨,发射推力112吨。“东方红”1号的发射,实现了毛泽东提出的“我们也要搞人造卫星”的号召。它是中国的科学之星,是中国工人阶级、解放军、知识分子共同为祖国做出的杰出贡献。
6、英国:英国于1971年10月28日成功地发射了第一颗人造卫星“普罗斯帕罗”号,该星重约66公斤,轨道倾角82.1 °,近地点537公里,远地点1482公里,运行周期105.6分钟.发射地点位于澳大利亚的武默拉(Woomera)火箭发射场,运载火箭为英国的黑箭运载火箭.主要任务是试验各种技术新发明,例如试验一种新的遥测系统和太阳能电池组。它还携带微流星探测器,用以测量地球上层大气中这种宇宙尘高速粒子的密度。
7、其他:除上述国家外,加拿大、意大利、澳大利亚、德国、荷兰、西班牙、印度和印度尼西亚等也在准备自行发射或已经委托别国发射了人造卫星。
中国主流卫星
1、东方红四号大平台/鑫诺二号卫星
鑫诺二号卫星的主要服务对象是我国大陆、港澳台地区的通信广播用户。该卫星使用我国正在研制的新一代大型静止轨道卫星公用平台,即东方红四号卫星平台,装载22路Ku频段大功率转发器,卫星寿命末期输出功率10500W,发射重量5100kg(东方红三号卫星为中等容量通信卫星,可装载有效载荷200公斤,整星功率1800瓦,可装载24路中校功率转发器),设计寿命15年,使用长征三号乙(CZ-3B)运载火箭由西昌卫星发射中心发射,整星指标和能力达到国际先进水平。
该平台由电源、测控、数据管理、姿态和轨道控制、推进、结构与机构、热控等分系统组成,全三轴稳定控制方式。该平台输出总功率为8000-10000瓦,并具有扩展至10000瓦以上的能力,能为有效载荷提供功率约6000-8000瓦。该平台可承载有效载荷重量600-800公斤,整星最大发射重量可达5200公斤,可采用长征三号乙、阿里安和质子号等运载火箭发射。该平台设计寿命15年。
2、北斗导航试验卫星(Beidou)
“北斗导航试验卫星”由CAST研制,并将自行建立第一代卫星导航定位系统——“北斗导航系统”。
“北斗导航系统”是全天候、全天时提供卫星导航信息的区域导航系统。这个系统建成后,主要为公路交通、铁路运输、海上作业等领域提供导航服务,对我国国民经济建设将起到积极推动作用。“北斗导航试验卫星"”的首次发射成功,为“北斗导航系统”的建设奠定了基础。
发射“北斗导航试验卫星”采用的是“长征三号甲” 运载火箭。这次发射是我国长征系列运载火箭第63次飞行。
3、中星22号
“中星22号”为实用型地球同步通信卫星,是“东方红三号”的后续星。卫星质量为2.3吨,设计使用寿命8年,主要用于地面通信业务,由中国通信广播卫星公司经营。
据了解,卫星进入转移轨道后,将在西安卫星测控中心和航天远洋测量船等测控网的跟踪控制下,定点于东经98度赤道上空。
4、风云二号(FY-2)
风云二号卫星是一个直径2.1m,高1.6m的圆柱体,包括天线在内卫星总高度为3.1m,重约600kg,卫星姿态为自旋稳定,自旋转速为100±1转/分钟,卫星设计寿命为3年。
卫星装有多通道扫描辐射计和云图转发等有效载荷,可获取有关可见光云图、昼夜红外和水汽云图;播发展宽数字图像、低分辨率云图和S波段天气图:获取气象、海洋、水文数据收集平台的观测数据;收集空间环境监测数据。卫星工作于东经105°E赤道上空,位置保持精度为东西±0.5°、南北±1°。
风云二号卫星由CAST和上海航天局共同研制生产的,CAST承担卫星控制、推进、转发、天线、测控及部分结构等分系统1997年6月10日20时,风云二号卫星用长征三号运载火箭发射升空,在卫星地面测控站、远望二号测量船的测控管理下,卫星完成了星箭分离、卫星起旋、远地点调姿、远地点发动机点火、二次解锁分离、准静止轨道漂移等工作,卫星于6月17日定点成功。   风云二号卫星继承东方红二号甲卫星自旋稳定模式基础上,采用了多通道扫描辐射计、三通道微波传输、章动控制等一些新技术。卫星主要性能指标达到了国际90年代初期同类静止气象卫星的水平。
风云二号气象卫星是空间技术、遥感技术、通信技术和计算机技术等高技术相结合的产物,它定向覆盖、连续遥感地球表面与大气分布,具有实时性强、时间分辨率高、客观性和生动性等优点。
5、风云一号 (FY-1)
风云一号 (FY-1)是中国的极轨气象卫星系列,共发射了3颗,即FY-1A,1B,1C。
FY-1A,1B分别于1988年9月和1990年9月发射,是试验型气象卫星。这两颗卫星上装载的遥感器 成像性能良好,获取的试验数据和运行经验为后续卫星的研制和管理提供了有意义的数据。
FY-1C于1999年5月10日发射,运行于901千米的太阳同步极轨道,卫星设计寿命3年。卫星的主要遥感器是甚高分辨率可见光-红外扫描仪,通道数由FY-1A/B的5个增加到10个,分辨率为1100米。
卫星获取的遥感数据主要用于天气预报和植被、冰雪覆盖、洪水、森林火灾等环境监测.
6、东方红一号卫星(DFH-1)
1970年4月24日21时35分,东方红一号卫星(DFH-1)在甘肃酒泉东风靶场一举成功,由此开创了中国航天史的新纪元,使中国成为继苏、美、法、日之后世界上第五个独立研制并发射人造地球卫星的国家。
卫星采用自旋稳定方式。电子乐音发生器是全星的核心部分,它通过20MHz短波发射系统反复向地面播送“东方红”乐曲的前八小节。
7、东方红二号(DFH-2)
东方红二号(DFH-2)于1984年4月8日首次发射成功。共研制和发射3颗东方红二号卫星,从1970年开始研制到每三颗星发射,经历了近16年。“东方红二号”的发射成功,开始了用我国自己的通信卫星进行卫星通信的历史。
8、东方红二号甲(DFH-2A)
东方红二号甲是东方红二号卫星的改型星,其预研工作开始开1980年。
第一颗东方红二号甲卫星于1988年3月7日发射成功,不久相继成功发射了第二颗和第三颗星,它们分别定点于东经87.5°、110.5°、98°;第四颗星由于运载火箭第三级故障而未能进入预定轨道。
几年来,3颗卫星工作情况良好,达到了设计使用指标,在我国电视传输、卫星通信及对外广播中发挥了巨大作用。
9、东方红三号卫星(DFH-3)
东方红三号卫星是中国新一代通信卫星,主要用于电视传输、电话、电报、传真、广播和数据传输等业务。
星上有24路C频段转发器,其中6路为中功率转发器;其它18路为低功率转发器。服务区域包括:中国大陆、海南、台湾及近海岛屿。中功率通道的EIRP≥37dbW,低功率通道的EIRP≥33.5dbW。在地影期间,全部转发器工作。卫星寿命末期输出功率≥1700W:卫星允许的有效载荷质量达170kg。
卫星工作于地球静止轨道,位置保持精度,东西和南北均为±0.1°;天线指向误差为:俯仰和滚动均为±0.15°,偏航为±O.5°。卫星工作寿命8年,寿命末期单星可靠度为0.66。
卫星可与多种运载火箭相接口(ZC-3A、ARIANE-4等),卫星平台采用地球静止轨道卫星的公用平台(基本型),可作为中型的多种应用目的。
东方红三号卫星具有国际同类卫星(中型容量)的先进水平。  10、实践一号卫星(SJ-1)
实践一号卫星是科学探测和技术试验卫星。于1977年3月3日发射入轨,1979年5月11日卫星轨道寿命结束,星上长期工作的遥测系统一直清晰地向地面发回遥测信息。
实践一号是一颗自旋稳定的卫星,只经历不到10个月的时间就成功发射升空。
11、资源一号卫星(ZY-1)
资源一号卫星(ZY-1)是地球资源卫星,是我国第一代传输型地球资源卫星。1988年中国和巴西两国政府联合签定议定书,决定在资源一号卫星的基础上,由中巴双方共同投资,联合研制中巴地球资源卫星(简称CBERS)。
资源一号主要用来监测国土资源变化;估计森林蓄积量,农作物长势,快速查清洪涝、地震的估计损失,提出对策;对沿海经济开发,滩涂利用,水产养殖,环境污染等提供动态情报;同时勘探地下资源,使之合理开发、使用等。资源一号卫星重1450公斤,寿命两年。运行轨道为太阳同步轨道,轨道高778公里、倾角98.5度,轨道周期100.26分钟,回归周期26天,降交点地方时11:20。卫星为长方体,单翼太阳帆板。卫星采用三轴稳定的姿控方式和S波段及超短波测控体制。
资源一号卫星已于1999年10月14日用长征四号乙运载火箭发射成功。
12、中巴地球资源卫星(CBERS)
中巴地球资源卫星在中国资源一号原方案基础上,由中、巴两国共同投资,联合研制中巴地球资源卫星(代号CBERS)。并规定CBERS投入运行后,由两国共同使用。
资源一号卫星是我国第一代传输型地球资源卫星,星上三种遥感相机可昼夜观察地球,利用高码速率数传系统将获取的数据传输回地球地面接收站,经加工、处理成各种所需的图片,供各类用户使用。
由于其多光谱观察、对地观察范围大、数据信息收集快,特别有利于动态和快速观察地球地面信息。
由于卫星设置多光谱观察、对地观察范围大、数据信息收集快,并宏观、直观,因此,特别有利于动态和快速观察地球地面信息。
该卫星在我国国民经济的主要用途是;其图像产品可用来监测国土资源的变化,每年更新全国利用图;测量耕地面积,估计森林蓄积量,农作物长势、产量和草场载蓄量及每年变化;监测自然和人为灾害;快速查清洪涝、地震、林火和风沙等破坏情况,估计损失,提出对策;对沿海经济开发、滩涂利用、水产养殖、环境污染提供动态情报;同时勘探地下资源、圈定黄金、石油、煤炭和建材等资源区,监督资源的合理开发。
13、嫦娥一号卫星
“嫦娥一号”(Chang'E1)是中国自主研制、发射的第一个月球探测器。中国月球探测工程嫦娥一号月球探测卫星由中国空间技术研究院承担研制,以中国古代神话人物嫦娥命名,嫦娥奔月是一个在中国流传的古老的神话故事。嫦娥一号主要用于获取月球表面三维影像、分析月球表面有关物质元素的分布特点、探测月壤厚度、探测地月空间环境等。整个“奔月”过程大概需要8-9天。嫦娥一号将运行在距月球表面200千米的圆形极轨道上。嫦娥一号工作寿命1年,计划绕月飞行一年。执行任务后将不再返回地球。嫦娥一号发射成功,中国成为世界第五个发射月球探测器的国家地区。
14、天链一号卫星
“天链一号”卫星,是中国首次发射的数据中继卫星,由中国空间技术研究院为主研制,采用成熟的“东方红三号”通用平台并突破多项关键技术,其发射成功填补了中国中继卫星领域的空白。
其任务是为卫星、飞船等航天器提供数据中继和测控服务,极大地提高各类卫星使用效益和应急能力,能使资源卫星、环境卫星等数据实时下传,为应对重大自然灾害赢得更多预警时间,因此,它被称为“卫星中的卫星”。
众所周知,GPS系统是美国的国防导航卫星系统,也为民用导航。俄罗斯的GLONASS与GPS相似,都是由空间部分、地面监控部分和用户接收机部分组成,都是使用24颗高度约2万千米左右的卫星组成卫星星座。GPS分布在6个轨道平面上,每个轨道平面4颗,GLONASS分布在3个轨道平面上,每个轨道平面有8颗卫星。卫星的分布使得在全球的任何地方、任何时间都可观测到4颗以上的卫星,由此获得高精度的三维定位数据。这就提供了在时间上连续的全球导航能力。GPS定位精度可达15米,测速精度0.1米/秒;GLONASS导航定位精度较低,约为30—100米,测速精度0.15米/秒。这两个系统都是为全球范围内的飞机、舰船、坦克、地面车辆、步兵、导弹以及航天飞机等提供全天候、连续、实时、高精度的三维位置、三维速度和精确时间,因此,具有极高的军用价值和民用前景。
15、风云三号卫星
2008年5月27日于山西太原卫星发射中心发射升空,风云三号是我国首颗新一代极轨气象卫星,装备了可监测地球大气和气候的三维传感器,可在全球范围内实施全天候预报。风云三号安装有可见光红外扫描辐射仪、红外分光计、微波温度计、微波成像仪等10余种具有国际先进水平的探测仪器,探测性能比仅有可见光一种手段的第一代极轨气象卫星风云一号有质的提高,可在全球范围内实施三维、全天候、多光谱、定量探测,获取地表、海洋及空间环境等参数,实现中期数值预报。
风云三号实现的跨越有四个方面:
一是从单一光学观测发展到10余种先进仪器的综合探测,不仅能够获取云图,还能够通过光谱的层析,把整个大气层从高到低每个高度温度变化情况繁衍出来。
二是解决了云的遮挡问题。传统光学探测遇到云层时探测效果大打折扣,而风云三号能够对云的内部和云下的地面有清晰准确把握。
三是分辨率和灵敏度上的突破。风云三号一帧扫描的幅宽高达数千公里,而在这样一幅巨大的照片上,地面分辨率达到百米量级。星上仪器最高探测灵敏度达到0.1K,这意味着在距地面807公里高空的卫星,对地表温度0.1摄氏度的微小变化都可以准确感觉到。
四是使卫星数据传输的实时性大大提高。卫星每101分钟绕地球飞行一圈,每圈都经过两极。通过在北极附近向瑞典租用的地面站,可使卫星至少每101分钟就向地面传回一次数据,数据传输的实时性大大提高。
卫星系的形成 我们讨论一下卫星系的形成问题。卫星系的角动量的来源,和行星自转的角动量的来源是一样的,不过,当考虑到卫星的形成问题时,必须像分析行星系的形成过程那样来分析它;首先,行星系的原始星胚在收缩过程中,由于和上面一样的原因,会形成一个转动的球体,这个球体在向自身的引力中心收缩中,逐渐变成扁平的星云盘,在星云盘的中央部分,形成行星本体,而在星云盘的外围部分,则形成卫星,分量种情况考虑
2008年6月9日20时15分,我国在西昌卫星发射中心用“长征三号乙”运载火箭,成功将“中星9号”广播电视直播卫星送入太空。这是长征系列运载火箭第107次发射。
北京时间六月九日晚八时许,中国在西昌用“长征三号乙”运载火箭,将“中星九号”直播卫星发射升空。
“中星九号”卫星,是中国卫星通信集团公司向法国泰雷兹阿莱尼亚宇航公司订购的一颗广播电视直播卫星,将用于开展中国电视节目直播到户的传输业务。卫星投入使用后,可使数千万家庭直接收看北京奥运会盛况。
太空垃圾危害
众所周知,地球的大气和海洋正因堆积如山的垃圾而遭受严重污染。而欧洲航天局地面控制中心近日公布的电脑模拟图像显示,“太空垃圾”已经让地球上空成了一个垃圾场。
50年将太空变成垃圾场
按照火箭科学家专业的说法,它们被称为“轨道碎片”,不过一般人都将其称为“太空垃圾”。
如今,太空垃圾日益成为人类面临的一个难题。我们51年前将第一个航天器发射到太空———苏联第一颗人造卫星。半个世纪过去了,我们已经将太空变成了一个垃圾场,里面充斥着无数的碎片。在这里,数百颗卫星、一个国际空间站、一个太空望远镜、大量行星间探测器正在运行。
航天器会掉落大气层化为灰烬,但这一过程通常需要几个月时间。还有数百万太空碎片在距地面2万英里的地球静止轨道周围徘徊,始终不散去。
构成这些碎片的包括废弃的航天器和报废卫星,火箭外包装,碰撞和对接期间产生的金属片,螺母和螺栓,不慎丢弃的工具,以及从载人飞船上扔下的宇航员排泄物。俄罗斯“和平”号空间站虽为人类太空探索作出过重大贡献,但也在运行过程中产生了200多包垃圾。
1994年,“飞马座”无人火箭爆炸,瞬间化为30万件直径超过八分之一英寸的碎片。
“发生惨剧只是时间问题”
如今,美宇航局和其他机构逐渐地将部分太空垃圾编成目录。太空垃圾之所以受到如此重视,是因为它们严重威胁着宇航员和航天器安全。一小块涂料在太空的飞行速度能达到时速数万英里,一旦撞到国际空间站上,它们能轻而易举在空间站外壳留下凹痕,甚至能撞裂玻璃。
幸运的是,现代航天器装备有防护屏,能够使直径达到半英寸的物体撞击方向发生偏转。
此外,太空无比浩瀚,这些太空垃圾之间的空间很大,撞击的可能性微乎其微。
但是,专家仍指出这种惨剧的发生只是时间的问题。悲哀的是,清除太空垃圾远比清除地球上的垃圾困难得多。
卫星的作用
卫星按它所围绕的行星可分为地球卫星或其他星球的卫星。按来源分,地球卫星又可分为天然卫星和人造地球卫星。
要说作用,天然卫星是宇宙中自然形成的,不好说它有什么作用。当然,月亮是地球的天然卫星,它可以为地球人照明,还可以用来观察时间等,还可以想象出很多美丽的传说。人造卫星的用途很广泛,有的装有照相设备,用对地面进行照相、侦察,调查资源,监测地球气候和污染等;有的装有天文观测设备,用来进行天文观测;有的装有通信转播设备,用来转播广播、电视、数据通讯、电话等通讯讯号;有的装有科学研究设备,可以用来进行科研及空间无重力条件下的特殊生产。
总之,人造卫星因研制、生产、使用者的目的不同而有不同的用途。
彗 星
太阳系中小天体之一类。彗星是一团冰冻物质和尘埃。当它靠近太阳时即为可见。太阳的热使彗星物质蒸发,在冰核周围形成朦胧的彗发和一条稀薄物质流构成的彗尾。由于太阳风的压力,彗尾总是指向背离太阳的方向。
彗星是星际间物质,俗称“扫把星”。彗星的英文是Comet,是由希腊文演变而来的,意思是“尾巴”或“毛发”,也有'长发星’的含义。而中文的”彗”字,则是“扫帚”的意思。在《天文略论》这本书中写道:彗星为怪异之星,有首有尾,俗象其形而名之曰扫把星。《春秋》记载,公元前613年,“有星孛入于北斗”,这是世界上公认的首次关于哈雷彗星的确切记录,比欧洲早600多年。
观测彗星
除了离太阳很远时以外,彗星的长长的明亮稀疏的彗尾,在过去给人们这样的印象,即认为彗星很靠近地球,甚至就在我们的大气范围之内。1577年第谷指出当从地球上不同地点观察时,彗星并没有显出方位不同:因此他正确地得出它们必定很远的结论。彗星属于太阳系 小天体。 每当彗星接近太阳时,它的亮度迅速地增强。对离太阳相当远的彗星的观察表明它们沿着被高度拉长的椭圆运动,而且太阳是在这椭圆的一个焦点上,与开普勒第一定律一致。彗星大部分的时间运行在离太阳很远的地方,在那里它们是看不见的。只有当它们接近太阳时才能见到。大约有40颗彗星公转周期相当短(小于100年),因此它们作为同一颗天体会相继出现。
历史上第一个被观测到相继出现的同一天体是哈雷彗星[1],牛顿的朋友和捐助人哈雷(1656一1742年)在1705年认识到它是周期性的。它的周期是76年。历史记录表明自从公元前240年也可能自公元前466年来,它每次通过太阳时都被观测到了。它最近一次是在1986年通过的。离太阳很远时彗星的亮度很低,而且它的光谱单纯是反射阳光的光谱。当彗星进入离太阳8个天文单位以内时,它的亮度开始迅速增长并且光谱急剧地变化。科学家看到若干属于已知分子的明亮谱线。发生这种变化是因为组成彗星的固体物质(彗核)突然变热到足以蒸发并以叫做彗发的气体云包围彗核。太阳的紫外光引起这种气体发光。彗发的直径通常约为105千米,但彗尾常常很长,达108千米或1天文单位。
科学家估计一般接近太阳距离只有几个天文单位的彗星将在几千年内瓦解。公元1066年,诺曼人入侵英国前夕,正逢哈雷彗星回归。当时,人们怀有复杂的心情,注视着夜空中这颗拖着长尾巴的古怪天体,认为是上帝给予的一种战争警告和预示。后来,诺曼人征服了英国,诺曼统帅的妻子把当时哈雷彗星回归的景象绣在一块挂毯上以示纪念。中国民间把彗星贬称为“扫帚星”、“灾星”。像这种把彗星的出现和人间的战争、饥荒、洪水、瘟疫等灾难联系在一起的事情,在中外历史上有很多。彗星是在扁长轨道(极少数在近圆轨道)上绕太阳运行的一种质量较小的云雾状小天体。
彗星的轨道
彗星的轨道有椭圆、抛物线、双曲线三种。
椭圆轨道的彗星又叫周期彗星,另两种轨道的又叫非周期彗星。周期彗星又分为短周期彗星和长周期彗星。一般彗星由彗头和彗尾组成。彗头包括彗核和彗发两部分,有的还有彗云。并不是所有的彗星都有彗核、彗发、彗尾等结构。我国古代对于彗星的形态已很有研究,在长沙马王堆西汉古墓出土的帛书上就画有29幅彗星图。在晋书“天文志”上清楚地说明彗星不会发光,系因反射太阳光而为我们所见,且彗尾的方向背向太阳。彗星的体形庞大,但其质量却小得可怜,就连大彗星的质量也不到地球的万分之一。由于彗星是由冰冻着的各种杂质、尘埃组成的,在远离太阳时,它只是个云雾状的小斑点;而在靠近太阳时,因凝固体的蒸发、气化、膨胀、喷发,它就产生了彗尾。彗尾体积极大,可长达上亿千米。它形状各异,有的还不止一条,一般总向背离太阳的方向延伸,且越靠近太阳彗尾就越长。宇宙中彗星的数量极大,但目前观测到的仅约有1600颗。 彗星的轨道与行星的轨道很不相同,它是极扁的椭圆,有些甚至是抛物线或双曲线轨道。轨道为椭圆的彗星能定期回到太阳身边,称为周期彗星;轨道为抛物线或双曲线的彗星,终生只能接近太阳一次,而一旦离去,就会永不复返,称为非周期彗星,这类彗星或许原本就不是太阳系成员,它们只是来自太阳系之外的过客,无意中闯进了太阳系,而后又义无反顾地回到茫茫的宇宙深处。周期彗星又分为短周期(绕太阳公转周期短于200年)和长周期(绕太阳公转周期超过200年)彗星。
目前,已经计算出600多颗彗星的轨道。彗星的轨道可能会受到行星的影响,产生变化。当彗星受行星影响而加速时,它的轨道将变扁,甚至成为抛物线或双曲线,从而使这颗彗星脱离太阳系;当彗星减速时,轨道的偏心率将变小,从而使长周期彗星变为短周期彗星,甚至从非周期彗星变成了周期彗星以致被“捕获”。
彗星的结构
彗星没有固定的体积,它在远离太阳时,体积很小;接近太阳时,彗发变得越来越大,彗尾变长,体积变得十分巨大。彗尾最长竟可达2亿多千米。彗星的质量非常小,绝大部分集中在彗核部分。彗核的平均密度为每立方厘米1克。彗发和彗尾的物质极为稀薄,其质量只占总质量的1%~5%,甚至更小。彗星物质主要由水、氨、甲烷、氰、氮、二氧化碳等组成,而彗核则由凝结成冰的水、二氧化碳(干冰)、氨和尘埃微粒混杂组成,是个“脏雪球”。
彗尾的产生
彗尾被认为是由气体和尘埃组成;4个联合的效应将它从彗星上吹出:
(1)当气体和伴生的尘埃从彗核上蒸发时所得到的初始动量。
(2)阳光的辐射压将尘埃推离太阳。
(3)太阳风将带电粒子吹离太阳。
(4)朝向太阳的万有引力吸力。
这些效应的相互作用使每个彗尾看上去都不一样。当然,物质蒸发到彗发和彗尾中去,消耗了彗核的物质。有时以爆发的方式出现,比拉彗星就是那样;1846年它通过太阳时破裂成两个,1852年那次通过以后就全部消失。
彗星的起源
彗星的起源是个未解之谜。有人提出,在太阳系外围有一个特大彗星区,那里约有1000亿颗彗星,叫奥尔特云,由于受到其它恒星引力的影响,一部分彗星进入太阳系内部,又由于木星的影响,一部分彗星逃出太阳系,另一些被“捕获”成为短周期彗星;也有人认为彗星是在木星或其它行星附近形成的;还有人认为彗星是在太阳系的边远地区形成的;甚至有人认为彗星是太阳系外的来客。因为周期彗星一直在瓦解着,必然有某种产生新彗星以代替老彗星的方式。可能发生的一种方式是在离太阳105天文单位的半径上储藏有几十亿颗以各种可能方向绕太阳作轨道运动的彗星群。这个概念得到观测的支持,观测到非周期彗星以随机的方向沿着非常长的椭圆形轨道接近太阳。随着时间的推移,由于过路的恒星给予的轻微引力,可以扰乱遥远彗星的轨道,直至它的近日点的距离变成小于几个天文单位。当彗星随后进入太阳系时,太阳系内的各行星的万有引力的吸力能把这个非周期彗星转变成新的周期彗星(它瓦解前将存在几千年)。另一方面,这些力可将它完全从彗星云里抛出。如果这说法正确,过去几个世纪以来一千颗左右的彗星记录只不过是巨大彗星云中很少一部分样本,这种云迄今尚未直接观察到。与个别恒星相联系的这种彗星云可能遍及我们所处的银河系内。迄今还没有找到一种方法来探测可能与太阳结成一套的大量彗星,更不用说那些与其他恒星结成一套的彗星云了。彗星云的总质量还不清楚,不只是彗星总数很难确定,即使单个彗星的质量也很不确定。估计彗星云的质量在10-13至10-3地球质量之间。
彗星的性质
彗星的性质还不能确切知道,因为它藏在彗发内,不能直接观察到,但我们可由彗星的光谱猜测它的一些性质。通常,这些谱线表明存在有OH、NH和NH2基团的气体,这很容易解释为最普通的元素C、N和O的稳定氢化合物,即CH4,NH3和H2O分解的结果,这些化合物冻结的冰可能是彗核的主要成分。科学家相信各种冰和硅酸盐粒子以松散的结构散布在彗核中,有些象脏雪球那样,具有约为0.1克/立方厘米的密度。当冰受热蒸发时它们遗留下松散的岩石物质,所含单个粒子其大小从104厘米到大约105厘米之间。当地球穿过彗星的轨道时,我们将观察到的这些粒子看作是流星。有理由相信彗星可能是聚集形成了太阳和行星的星云中物质的一部分。因此,人们很想设法获得一块彗星物质的样本来作分析以便对太阳系的起源知道得更多。这一计划理论上可以作到,如设法与周期彗星在空间做一次会合。目前这样的计划正在研究中。
彗星与生命
彗星是一种很特殊的星体,与生命的起源可能有着重要的联系。彗星中含有很多气体和挥发成分。根据光谱分析,主要是C2、CN、C3、另外还有OH、NH、NH2、CH、Na、C、O等原子和原子团。这说明彗星中富含有机分子。许多科学家注意到了这个现象:也许,生命起源于彗星!1990年,NASA的Kevin. J. Zahule和Daid Grinspoon对白垩纪——第三纪界线附近地层的有机尘埃作了这样的解释:一颗或几颗彗星掠过地球,留下的氨基酸形成了这种有机尘埃;并由此指出,在地球形成早期,彗星也能以这种方式将有机物质像下小雨一样洒落在地球上——这就是地球上的生命之源。
彗星的命名规则
在1995年前,彗星是依照每年的发现先后顺序以英文小楷排列。如1994年发现第一颗彗星就是1994a,按此类推,经过一段时间观测,确定该彗星的轨道并修正后,就以该彗星过近日点的先后次序,以罗马数字Ⅰ、Ⅱ等排在年之后(这编号通常是该年结束后二年才能编好)。如舒梅克?利维九号彗星的编号为1993e和1994Ⅹ。
除了编号外,彗星通常都是以发现者姓氏来命名。一颗彗星最多只能冠以三个发现者的名字,舒梅克·利维九号彗星的英文名称为Shoemaker-Levy 9。
由1995年起,国际天文联合会参考小行星的命名法则,采用以半个月为单位,按英文字母顺序排列的新彗星编号法。以英文全部字母去掉I和Z不用将剩下的24个字母的顺序,如1月份上半月为A、1月份下半月为B、按此类推至12月下半月为Y。
其后再以1、2、3..等数字序号编排同一个半月内所发现的彗星。此外为方便识别彗星的状况,于编号前加上标记:
A/ 可能为小行星
P/ 确认回归1次以上的短周期彗星,P前面再加上周期彗星总表编号(如哈雷彗星为 1P/1982 U1或简称1P亦可)
C/ 长周期彗星(200年周期以上,如海尔·波普彗星为C/1995 O1)
X/ 尚未算出轨道根数的彗星
D/ 不再回归或可能已消失了的彗星(如舒梅克?利维九号彗星为D/ 1993 F2)
附 S/ 新发现的行星之卫星
如果彗星破碎,分裂成个以上的彗核,则在编号后加上-A、-B..以区分每个彗核。回归彗星方面,如彗星再次被观测到回归时,则在P/(或可能是D/)前加上一个由IAU小行星中心给定的序号,以避免该彗星回归时重新标记。例如哈雷彗星有以下标记:1P/1682 Q1=1P/1910 A2=1P/1982 U1=1P/Halley=哈雷彗星。
经国际天文联合会给予永久编号的周期彗星
在给予周期彗星一个永久编号之前,该彗星被发现后需要再通过一次近日点,或得到曾
经通过的证明,方能得到编号。例如编号“153P”的池谷?张彗星,其公转周期为360多
年,因证明与1661年出现的彗星为同一颗,因而获得编号。其他未有编号的周期彗星请
参阅Cometography.com网站。
彗星通常是以发现者来命名,但有少数则以其轨道计算者来命名,例如编号为“1P”的
哈雷彗星,“2P”的恩克彗星和“27P”的克伦梅林彗星。同时彗星的轨道及公转周期
会因受到木星等大型天体影响而改变,它们也有因某种原因而消失,无法再被人们找到,
包括在空中解体碎裂、行星引力、物质通过彗尾耗尽等。
编号 /命名 中文名称 发现者/再发现者 周期(年)
1P/Halley 哈雷彗星 哈雷 76.01
2P/Encke 恩克彗星 Johann Franz Encke 3.30
3D/Biela 比拉彗星 Biela 6.62
4P/Faye 法叶彗星 Faye 7.34
5D/Brorsen 布罗森彗星 Brorsen 5.46
6P/d'Arrest 达雷斯特彗星 d'Arrest 6.51
7P/Pons-Winnecke 庞斯?温尼克彗星 Pons & Winnecke 6.38
8P/Tuttle 塔特尔彗星 塔特尔 13.51
9P/Tempel 1 坦普尔1号彗星 坦普尔 5.52
10P/Tempel 2 坦普尔2号彗星 坦普尔 5.38
11P/Tempel-Swift-LINEAR 坦普尔?斯威夫特?林尼尔彗星
坦普尔、斯威夫特、LINEAR小组 6.37
12P/Pons-Brooks 庞斯?布鲁克斯彗星 Pons & Brooks 70.92
13P/Olbers 奥伯斯彗星 Olbers 69.56
14P/Wolf 沃尔夫彗星 Wolf 8.21
15P/Finlay 芬利彗星 Finlay 6.76
16P/Brooks 2 布鲁克斯2号彗星 Brooks 6.89
17P/Holmes 霍尔姆斯彗星 Holmes 7.07
18D/Perrine-Mrkos 佩伦?马尔科斯彗星 Perrine & Mrkos 6.72
19P/Borrelly 博雷林彗星 Borrelly 6.88
20D/Westphal 威斯特普哈尔彗星 Westphal 61.86
21P/Giacobini-Zinner 贾科比尼-津纳彗星 Giacobini & Zinner 6.62
22P/Kopff 科普夫彗星 Kopff 6.46
23P/Brorsen-Metcalf 布罗森-梅特卡夫彗星 布罗森 & 梅特卡夫 70.54
24P/Schaumasse 肖马斯彗星 Schaumasse 8.22
25D/Neujmin 2 诺伊明2号彗星 Neujmin 5.43
26P/Grigg-Skjellerup 格里格-斯克杰利厄普彗星 Grigg & Skjellerup 5.31
27P/Crommelin 克伦梅林彗星 Crommelin 27.41
28P/Neujmin 1 诺伊明1号彗星 Neujmin 18.19
29P/Schwassmann-Wachmann 1 施瓦斯曼?瓦茨曼1号彗星 施瓦斯曼、瓦茨曼 14.70
30P/Reinmuth 1 莱马斯1号彗星 Reinmuth 7.32
31P/Schwassmann-Wachmann 2 施瓦斯曼?瓦茨曼2号彗星 施瓦斯曼、瓦茨曼 8.72
32P/Comas Sola 科马斯-索拉彗星 Comas Sola 8.78
33P/Daniel 丹尼尔彗星 Daniel 7.06
34D/Gale 盖尔彗星 Gale 11.17
35P/Herschel-Rigollet Herschel & Rigollet 赫歇尔-里高莱特彗星 155.91
36P/Whipple 惠普尔彗星 Whipple 8.51
37P/Forbes 福布斯彗星 Forbes 6.35
38P/Stephan-Oterma 史蒂芬?奥特玛彗星 Stephan & Oterma 37.71
39P/Oterma 奥特玛彗星 Oterma 19.5
40P/Vaisala 1 维萨拉1号彗星 Vaisala 10.8
41P/Tuttle-Giacobini-Kresak 塔特尔-贾科比尼-克雷萨克彗星 塔特尔 & Giacobini & Kresak 5.46
42P/Neujmin 3 诺伊明3号彗星 Neujmin 10.7
43P/Wolf-Harrington 沃尔夫?哈灵顿彗星 Wolf & Harrington 6.45
44P/Reinmuth 2 莱马斯2号彗星 Reinmuth 6.64
45P/Honda-Mrkos-Pajdusakova 本田-马尔克斯-帕贾德萨科维彗星
本田实& Mrkos & Pajdusakova 5.27
46P/Wirtanen 沃塔南彗星 Wirtanen 5.46
47P/Ashbrook-Jackson 阿什布鲁克-杰克逊彗星 Ashbrook & Jackson 8.16
48P/Johnson 约翰逊彗星 Johnson 6.96
49P/Arend-Rigaux 阿伦-里高克斯彗星 Arend & Rigaux 6.62
50P/Arend 阿伦彗星 Arend 8.24
51P/Harrington 哈灵顿彗星 Harrington 6.78
52P/Harrington-Abell 哈灵顿?阿贝尔彗星 Harrington & Abell 7.53
53P/Van Biesbroeck 范比斯布莱特彗星 Van Biesbroeck 12.5
54P/de Vico-Swift-NEAT 德威科-斯威夫特-尼特彗星 de Vico & 斯威夫特 & NEAT 7.31
55P/Tempel-Tuttle 坦普尔?塔特尔彗星 坦普尔、塔特尔 33.22
56P/Slaughter-Burnham 斯劳特-伯纳姆彗星 Slaughter & Burnham 11.59
57P/du Toit-Neujmin-Delporte 杜托伊特-诺伊明-德尔波特彗星
du Toit & Neujmin & Delporte 6.41
58P/Jackson-Neujmin 杰克森- 诺伊明彗星 Jackson & Neujmin 8.27
59P/Kearns-Kwee 基恩斯-克威彗星 Kearns & Kwee 9.47
60P/Tsuchinshan 2 紫金山2号彗星 紫金山天文台 6.95
61P/Shajn-Schaldach 沙因-沙尔达奇彗星 Shajn & Schaldach 7.49
62P/Tsuchinshan 1 紫金山1号彗星 紫金山天文台 6.64
63P/Wild 1 怀尔德1号彗星怀尔德 13.24
64P/Swift-Gehrels 斯威夫特?格雷尔斯彗星 斯威夫特 & 格雷尔斯 9.21
65P/Gunn 冈恩彗星 Gunn 6.80
66P/du Toit 杜托伊特彗星 du Toit 14.7
67P/Churyumov-Gerasimenko 丘尤穆夫-杰拉西门科彗星 Churyumov & Gerasimenko 6.57
68P/Klemola 凯莫拉彗星 Klemola 10.82
69P/Taylor 泰勒彗星 Taylor 6.95
70P/Kojima 小岛彗星 小岛信久 7.04
71P/Clark 克拉克彗星 Clark 5.52
72P/Denning-Fujikawa 丹宁-藤川彗星 Denning & 藤川繁久 9.01
73P/Schwassmann-Wachmann 3 施瓦斯曼?瓦茨曼3号彗星 施瓦斯曼、瓦茨曼 5.34
74P/Smirnova-Chernykh 斯默诺瓦-切尔尼克彗星 Smirnova & 切尔尼克 8.52
75D/Kohoutek 科胡特克彗星 Kohoutek 6.67
76P/West-Kohoutek-Ikemura 威斯特-科胡特克-池村彗星 West & Kohoutek & Ikemura 6.41
77P/Longmore 隆莫彗星 Longmore 6.83
78P/Gehrels 2 格雷尔斯2号彗星 Gehrels 7.22
79P/du Toit-Hartley 杜托伊特-哈特雷彗星 du Toit & Hartley 5.21
80P/Peters-Hartley 彼得斯-哈特雷彗星 Peters & Hartley 8.12
81P/Wild 2 怀尔德2号彗星怀尔德 6.40
82P/Gehrels 3 格雷尔斯3号彗星 Gehrels 8.11
83P/Russell 1 拉塞尔1号彗星 拉塞尔 6.10
84P/Giclas 吉克拉斯彗星 Giclas 6.95
85P/Boethin 波辛彗星 利奥波辛 11.23
86P/Wild 3 怀尔德3号彗星怀尔德 6.91
87P/Bus 巴斯彗星 Bus 6.52
88P/Howell 霍威尔彗星 Howell 5.50
89P/Russell 2 拉塞尔2号彗星 拉塞尔 7.42
90P/Gehrels 1 格雷尔斯1号彗星 Gehrels 14.8
91P/Russell 3 拉塞尔3号彗星 拉塞尔 7.67
92P/Sanguin 桑吉恩彗星 Sanguin 12.4
93P/Lovas 1 洛瓦斯1号彗星 Lovas 9.15
94P/Russell 4 拉塞尔4号彗星 拉塞尔 6.58
95P/Chiron 奇龙彗星 Kowal 50.78
96P/Machholz 1 麦克霍尔兹1号彗星 Machholz 5.24
97P/Metcalf-Brewington 梅特卡夫-布鲁英顿彗星 Metcalf & Brewington 7.76
98P/Takamizawa 高见泽彗星 高见泽今朝雄 7.21
99P/Kowal 1 科瓦尔彗星 Kowal 15.1
100P/Hartley 1 哈特雷1号彗星 哈特雷 6.29
101P/Chernykh 切尔尼克彗星 切尔尼克 13.90
102P/Shoemaker 1 舒梅克1号彗星 C. Shoemaker & E. Shoemaker 7.26
103P/Hartley 2 哈特雷2号彗星 哈特雷 6.41
104P/Kowal 2 科瓦尔2号彗星 Kowal 6.18
105P/Singer Brewster 辛格-布鲁斯特彗星 Singer Brewster 6.44
106P/Schuster 舒斯特彗星 Schuster 7.29
107P/Wilson-Harrington 威尔逊-哈灵顿彗星 Helin & Wilson & Harrington 4.30
108P/Ciffreo 西弗里奥彗星 Ciffreo 7.25
109P/Swift-Tuttle 斯威夫特?塔特尔彗星 斯威夫特、塔特尔 135.00
110P/Hartley 3 哈特雷3号彗星 哈特雷 6.88
111P/Helin-Roman-Crockett 赫林-罗曼-克罗克特彗星 Helin & Roman & Crockett 8.12
112P/Urata-Niijima 浦田?新岛彗星 浦田武、新岛恒男 6.65
113P/Spitaler 斯皮塔勒彗星 Spitaler 7.10
114P/Wiseman-Skiff 怀斯曼-斯基夫彗星 Wiseman & Skiff 6.66
115P/Maury 莫里彗星 Maury 8.79
116P/Wild 4 怀尔德4号彗星 怀尔德 6.48
117P/Helin-Roman-Alu 1 赫琳-罗曼-阿勒1号彗星 Helin & Roman & Alu 8.25
118P/Shoemaker-Levy 4 舒梅克?利维4号彗星 C. Shoemaker, E. Shoemaker & Levy 6.49
119P/Parker-Hartley 帕克尔-哈特雷彗星 Parker & Hartley 8.89
120P/Mueller 1 米勒1号彗星 Mueller 8.43
121P/Shoemaker-Holt 2 舒梅克-霍尔特2号彗星 C.Shoemaker, E.Shoemaker & Holt 8.01
122P/de Vico 德威科彗星 de Vico 74.41
123P/West-Hartley 威斯特-哈特雷彗星 West & Hartley 7.58
124P/Mrkos 马尔科斯彗星 Mrkos 5.74
125P/Spacewatch 太空观察彗星 Spacewatch 5.54
126P/IRAS 艾拉斯彗星 IRAS卫星 13.29
127P/Holt-Olmstead 霍尔特-奥尔斯特德彗星 Holt & Olmstead 6.34
128P/Shoemaker-Holt 1 舒梅克-霍尔特1号彗星 C. Shoemaker, E. Shoemaker & Holt 6.34
129P/Shoemaker-Levy 3 舒梅克?利维3号彗星 C. Shoemaker, E. Shoemaker & Levy 7.24
130P/McNaught-Hughes 麦克诺特-哈根斯彗星 McNaught & Hughes 6.67
131P/Mueller 2 米勒2号彗星 Mueller 7.08
132P/Helin-Roman-Alu 2 赫琳-罗曼-阿勒2号彗星 Helin & Roman & Alu 8.24
133P/Elst-Pizarro 厄斯特-匹兹阿罗彗星 Elst & Pizarro 5.61
134P/Kowal-Vávrová 科瓦尔-瓦洛瓦彗星 Kowal & Vávrová 15.58
135P/Shoemaker-Levy 8 舒梅克?利维8号彗星 C. Shoemaker, E. Shoemaker & Levy 7.49
136P/Mueller 3 米勒三号彗星 Mueller 8.71
137P/Shoemaker-Levy 2 舒梅克?利维2号彗星 C. Shoemaker, E. Shoemaker & Levy 9.37
138P/Shoemaker-Levy 7 舒梅克?利维7号彗星 C. Shoemaker, E. Shoemaker & Levy 6.89
139P/Vaisala-Oterma 维萨拉-奥特马彗星 Vaisala & Oterma 9.57
140P/Bowell-Skiff 鲍威尔-斯基夫彗星 Bowell & Skiff 16.18
141P/Machholz 2 麦克霍尔兹2号彗星 Machholz 5.23
142P/Ge-Wang 葛?汪彗星葛永良、汪琦 11.17
143P/Kowal-Mrkos 科瓦尔-马尔科斯彗星 Kowal & Mrkos 8.94
144P/Kushida 串田彗星 串田嘉男 7.58
145P/Shoemaker-Levy 5 舒梅克?利维5号彗星 C. Shoemaker, E. Shoemaker & Levy 8.69
146P/Shoemaker-LINEAR 舒梅克?林尼尔彗星 C. Shoemaker, E. Shoemaker & LINEAR 7.88
147P/Kushida-Muramatsu 串田?村松彗星 串田嘉男、村松修 7.44
148P/Anderson-LINEAR 安德逊?林尼尔彗星 Anderson & LINEAR 7.04
149P/Mueller 4 米勒4号彗星 Mueller 9.01
150P/LONEOS 罗尼斯彗星 LONEOS小组 7.67
151P/Helin 赫琳彗星 Helin 14.1
152P/Helin-Lawrence 赫琳-劳伦斯彗星 Helin & Lawrence 9.52
153P/Ikeya-Zhang 池谷?张彗星 池谷薰、张大庆 367.17
154P/Brewington 布鲁英顿彗星 Brewington 10.7
155P/Shoemaker 3 舒梅克3号彗星 C. Shoemaker & E. Shoemaker 17.1
156P/Russell-LINEAR 罗素?林尼尔彗星 罗素、LINEAR小组 6.84
157P/Tritton 特里顿彗星 Tritton 6.45
158P/Kowal-LINEAR 科瓦尔-林尼尔彗星 Kowal、LINEAR小组 10.3
159P/LONEOS 罗尼斯彗星 LONEOS小组 14.3
160P/LINEAR 林尼尔彗星 LINEAR小组 7.95
161P/Hartley-IRAS 哈特雷?艾拉斯彗星 哈特雷、IRAS卫星 21.5
162P/Siding Spring 塞丁泉彗星 Siding Spring
163P/NEAT 尼特彗星 NEAT小组
164P/Christensen 克里斯坦森彗星 克里斯坦森
165P/LINEAR 林尼尔彗星 LINEAR小组
166P/NEAT 尼特彗星 NEAT小组
167P/CINEOS 西尼奥彗星 CINEOS小组
168P/Hergenrother 赫詹若斯彗星 Carl W. Hergenrother
169P/NEAT 尼特彗星 NEAT小组
170P/Christensen 2 克里斯坦森2号彗星 克里斯坦森
171P/Spahr 斯帕尔彗星 Timophy B. Spahr
172P/Yeung 杨彗星 杨光宇
173P/Mueller 5 米勒5号彗星 Jean Mueller
174P/Echeclus 太空监测
175P/Hergenrother 赫詹若斯彗星 Carl W. Hergenrother
176P/LINEAR 林尼尔彗星 LINEAR小组
177P/Barnard 2 巴纳德2号彗星 巴纳德
178P/Hug-Bell 胡格?贝尔彗星 胡格、贝尔
179P/Jedicke 詹迪克彗星
180P/NEAT 尼特彗星 NEAT小组
181P/Shoemaker-Levy 6 舒梅克?利维6号彗星
182P/LONEOS 罗尼斯彗星 LONEOS小组
183P/Korlevic-Juric 科莱维克-尤里奇彗星
184P/Lovas 2 洛瓦斯2号彗星
185P/Petriew 帕特雷彗星
186P/Garradd 杰拉德彗星
187P/LINEAR 林尼尔彗星
188P/LINEAR-Mueller 林尼尔-米勒彗星
189P/NEAT 尼特彗星 NEAT小组
190P/Mueller 米勒彗星
191P/McNaught 麦克诺特彗星
192P/Shoemaker-Levy 1 舒梅克-利维1号彗星
193P/LINEAR-NEAT 林尼尔-尼特彗星
194P/LINEAR 林尼尔彗星
195P/Hill 希尔彗星
196P/Tichy 迪奇彗星
197P/LINEAR 林尼尔彗星
198P/ODAS 奥达斯彗星
199p/Shoemaker 舒梅克彗星
200P/Larsen 拉森彗星
201P/LONEOS 罗尼斯彗星
202P/Scotti 斯科特彗星
203P/Korlevic (P/1999 WJ7 = P/2008 R4) 科莱维克彗星
204P/LINEAR-NEAT (P/2001 TU80 = P/2008 R5) 林尼尔-尼特彗星
205P/Giacobini (P/1896 R2 = P/2008 R6) 贾科比尼彗星
206P/ Barnard-Boattini 巴纳德-博阿蒂尼彗星
207P/ NEAT 尼特彗星
208P/ McMillan 麦克米尔兰彗星
209P/ LINEAR 林尼尔彗星
210P/ Christensen 克里斯坦森彗星
211P/ Hill 希尔彗星
212P/NEAT 尼特彗星
213P Van Ness
214P LINEAR 林尼尔彗星
215P NEAT 尼特彗星
216P LINEAR 林尼尔彗星
217P LINEAR 林尼尔彗星
218P LINEAR 林尼尔彗星
219P LINEAR 林尼尔彗星
220P McNaught 麦克诺特彗星
221P LINEAR 林尼尔彗星
222P LINEAR 林尼尔彗星
已分裂的彗星
* 51P/ 哈灵顿彗星
* 57P/杜托伊特-诺伊明-德尔波特彗星
* 73P/ 施瓦斯曼?瓦茨曼3号彗星
* 101P/ 切尔尼克彗星
* 128P/舒梅克-霍尔特彗星
* 141P/麦克霍尔兹2号彗星
已消失的彗星
* 3D/ 比拉彗星
* 5D /布罗森彗星
* 18D/ 佩伦?马尔科斯彗星
* 20D/威斯特普哈尔彗星
* 25D/ 诺伊明2号彗星
* 34D/ 盖尔彗星
* 75D/科胡特克彗星
http://www.cfa.harvard.edu/iau/lists/PeriodicCodes.html
以下是国际天文联合会列出的1935年以来出现的明亮彗星亮度排行榜
总星等 彗星编号/命名 中文名称
(-10) C/1965 S1 (Ikeya-Seki) 池谷-关彗星
(-5.5) C/2006 P1 (McNaught) 麦克诺特彗星
-3.0 C/1975 V1 (West) 威斯特彗星
(-3) C/1947 X1 (Southern comet) 南天彗星
-0.8 C/1995 O1 (Hale-Bopp) 海尔-波普彗星
(-0.5) C/1956 R1 (Arend-Roland) 阿伦-罗兰彗星
(-0.5) C/2002 V1 (NEAT) 尼特彗星
0.0 C/1996 B2 (Hyakutake) 百武彗星
0.0 C/1969 Y1 (Bennett) 贝内特彗星
(0) C/1973 E1 (Kohoutek) 科胡特克彗星
(0) C/1948 V1 (Eclipse comet)
(0) C/1962 C1 (Seki-Lines) 关-林恩斯彗星
0.5 C/1998 J1 (SOHO) 索霍彗星
1.0 C/1957 P1 (Mrkos) 马尔科斯彗星
(1) C/1970 K1 (White-Ortiz-Bolelli)
1.7 C/1983 H1 (IRAS-Araki-Alcock) 艾拉斯-荒贵-阿尔科克彗星
(2) C/1941 B2 (de Kock-Paraskevopoulos)
(2.2) C/2002 T7 (LINEAR) 林尼尔彗星
2.4 1P/1982 U1 (Halley) 哈雷彗星
(2.4) 17P (Holmes) [Oct. 2007] 霍尔姆斯彗星
2.5 C/2000 WM_1 (LINEAR) 林尼尔彗星
2.7 C/1964 N1 (Ikeya) 池谷彗星
2.8 C/2001 Q4 (NEAT) 尼特彗星
2.8 C/1989 W1 (Aarseth-Brewington) 阿塞斯-布鲁英顿彗星
2.8 C/1963 A1 (Ikeya) 池谷彗星
2.9 153P/2002 C1 (Ikeya-Zhang) 池谷-张彗星
3.0 C/2001 A2 (LINEAR) 林尼尔彗星
3.3 C/1936 K1 (Peltier) 佩尔提尔彗星
(3.3) C/2004 F4 (Bradfield) 布雷得菲尔德彗星
3.5 C/2004 Q2 (Machholz) 麦克霍尔兹彗星
3.5 C/1942 X1 (Whipple-Fedtke-Tevzadze)
3.5 C/1940 R2 (Cunningham) 坎宁安彗星
3.5 C/1939 H1 (Jurlof-Achmarof-Hassel)
3.5 C/1959 Y1 (Burnham)
3.5 C/1969 T1 (Tago-Sato-Kosaka) 多胡-佐藤-小坂彗星
3.5 C/1980 Y1 (Bradfield) 布雷得菲尔德彗星
(3.5) C/1961 O1 (Wilson-Hubbard) 威尔逊-哈巴德彗星
(3.5) C/1955 L1 (Mrkos) 马尔科斯彗星
3.6 C/1990 K1 (Levy) 利维彗星
3.7 C/1975 N1 (Kobayashi-Berger-Milon) 小林-博尔格尔-米伦彗星
3.9 C/1974 C1 (Bradfield) 布雷得菲尔德彗星
3.9 C/1937 N1 (Finsler)
http://cfa-www.harvard.edu/icq/brightest.html
哈雷彗星
大部分彗星都不停地围绕太阳沿着很扁长的轨道运行。循椭圆形轨道运行的彗星,叫“周期彗星”。公转周期一般在3年至几世纪之间。周期只有几年的彗星多数是小彗星,直接用肉眼很难看到。不循椭圆形轨道运行的彗星,只能算是太阳系的过客,一旦离去就不见踪影。大多数彗星在天空中都是由西向东运行。但也有例外,哈雷彗星就从东向西运行的。
哈雷彗星的平均公转周期为76年, 但是你不能用1986年加上几个76年得到它的精确回归日期。主行星的引力作用使它周期变更,陷入一个又一个循环。非重力效果(靠近太阳时大量蒸发)也扮演了使它周期变化的重要角色。在公元前239年到公元1986年,公转周期在76.0(1986年)年到79.3年(451和1066年)之间变化。最近的近日点为公元前11年和公元66元。
哈雷彗星的公转轨道是逆向的,与黄道面呈18度倾斜。另外,像其他彗星一样,偏心率较大。哈雷彗星的彗核大约为16x8x8 千米。与先前预计的相反,哈雷彗星的彗核非常暗:它的反射率仅为0.03,使它比煤还暗,成为太阳系中最暗物体之一。哈雷彗星彗核的密度很低:大约0.1克/立方厘米,说明它多孔,可能是因为在冰升华后,大部分尘埃都留了下来所致。
哈雷彗星在众多彗星中几乎是独一无二的,又大又活跃,且轨道明确规律。这使得Giotto飞行器瞄准起来比较容易。但是它无法代表其他彗星所具有的公性。
彗星本身是不会发光的。早在我国晋代,我国天文学家就认识到这一点。《晋书●天文志》中记载,“彗本无光,反日而为光”。彗星是靠反射太阳光而发光的。一般彗星的发光都是很暗的,它们的出现只有天文学家用天文仪器才可观测到。只有极少数彗星,被太阳照得很明亮拖着长长的尾巴,才被我们所看见。
(Halley's comet)第一颗经推算预言必将重新出现而得到证实的著名大彗星。当它在1682年出现后,英国天文学家哈雷注意到它的轨道与1607年和1531年出现的彗星轨道相似,认为是同一颗彗星的三次出现,并预言它将在1758年底或1759年初再度出现。虽然哈雷死于1742年,没能看到它的重新出现,但在1759年它果然又回来,这是天文学史上一个惊人成就。这颗彗星因而命名为哈雷彗星。它的公转周期为76年,近日距为8,800万公里(0.59天文单位),远日距为53亿公里(35.31天文单位),轨道偏心率为0.967。中国史书上对哈雷彗星的出现有详细记载。论记录时间之早,首推《春秋》。《春秋》说:鲁文公十四年(公元前613年)“秋七月,有星孛入于北斗。”这是世界上第一次关于哈雷彗星的确切记录。论所记内容之早,则首推西汉的《淮南子》。《淮南子·兵略训》说:“武王伐纣,东面而迎岁,至汜而水,至共头而坠,彗星出,而授殷人其柄。”据中国天文学家张钰哲推算,这是公元前1057年哈雷彗星回归的记录。从公元前240年起,哈雷彗星每次出现,中国都有记载,其次数之多和记录之详,是其他国家所没有的。哈雷彗星的原始质量估计小于10万亿吨。如取近似值,彗核平均密度为每立方厘米1克,则彗核半径应小于15公里。估计它每公转一圈,质量减少约20亿吨,这只是其总质量的很小一部分,因此它还会存在很久。
新  星
什么叫新星?
有时候,遥望星空,你可能会惊奇地发现:在某一星区,出现了一颗从来没有见过的明亮星星!然而仅仅过了几个月甚至几天,它又渐渐消失了。
这种“奇特”的星星叫做新星或者超新星。在古代又被称为“客星”,意思是这是一颗“前来作客”的恒星。
新星和超新星是变星中的一个类别。人们看见它们突然出现,曾经一度以为它们是刚刚诞生的恒星,所以取名叫“新星”。其实,它们不但不是新生的星体,相反,而是正走向衰亡的老年恒星。其实,它们就是正在爆发的红巨星。我们曾经不止一次提到,当一颗恒星步入老年,它的中心会向内收缩,而外壳却朝外膨胀,形成一颗红巨星。红巨星是很不稳定的,总有一天它会猛烈地爆发,抛掉身上的外壳,露出藏在中心的白矮星或中子星来。
在大爆炸中,恒星将抛射掉自己大部分的质量,同时释放出巨大的能量。这样,在短短几天内,它的光度有可能将增加几十万倍,这样的星叫“新星”。如果恒星的爆发再猛烈些,它的光度增加甚至能超过1000万倍,这样的恒星叫做“超新星”。
超新星爆发的激烈程度是让人难以置信的。据说它在几天内倾泄的能量,就像一颗青年恒星在几亿年里所辐射的那样多,以致它看上去就像一整个星系那样明亮!
新星或者超新星的爆发是天体演化的重要环节。它是老年恒星辉煌的葬礼,同时又是新生恒星的推动者。超新星的爆发可能会引发附近星云中无数颗恒星的诞生。另一方面,新星和超新星爆发的灰烬,也是形成别的天体的重要材料。比如说,今天我们地球上的许多物质元素就来自那些早已消失的恒星。新星是激变变星的一类,是由吸积在白矮星表面的氢造成剧烈的核子爆炸的现象。这类星通常原本都很暗,难以发现,爆发时突然增亮,被认为是新产生的恒星,因此而得名。新星按光度下降速度分为快新星(NA)、中速新星(NAB)、慢新星(NB)和甚慢新星(NC),爆发时亮度会增加几万、几十万甚至几百万倍,持续几星期或几年。但不能和Ia超新星或其他恒星的爆炸混淆,包括加州理工学院在2007年5月首度发现的发光红新星。
目前在银河系中已发现超过200颗新星。
发展
如果白矮星有一颗距离够近的伴星,使它能在伴星的洛希半径内,因此能稳定的从伴星的外层大气增生气体于表面。这颗伴星可以是一颗主序星,或是已经膨胀成红巨星的老年恒星。被捕获的气体主要是氢和氦,两种都是宇宙间最平常与最主要的成份。吸积在白矮星表面的气体因为重力被压得更紧密,压力使得温度变得非常的高并且传导至内部。白矮星包含的简并物质不会因为受热而膨胀,而受到压缩的氢气不断在表面增长。氢融合的速率受到温度和压力的影响,这意味着只要继续压缩,表面的温度和压力就会继续增加,当温度达到2,000万K时,核融合反应就会发生;在这种温度下的氢主要经由碳氮氧循环燃烧。对多数的双星系统,氢燃烧的热量是不稳定的,并且会很快的将大量的氢转换成其他元素,而造成热失控反应(只有在范围很窄的吸积率下,氢融合可以可以在表面稳定的进行)。 (Hydrogen fusion can occur in a stable manner on the surface, but only for a narrow range of accretion rates.) 这个过程会是放出大量的能量,使白矮星发生极端明亮的爆发,并将表面剩余的气体吹散。光度的上升是快还是慢,与新星的类型有关,而在到达高峰之后,光度的下降是很稳定的。从最大光度下降2至3个星等所花费的时间,可以用来对新星进行分类。快新星在短于25天的时间内光度或下降2等,慢新星则会超过80天才降低2星等。
但无论变化有多剧烈,新星所抛出的质量大约只有太阳质量的万分之一,相较于白矮星的质量是非常小的。此外,也只有5%吸积的质量参与核融合成为爆发的动力。但是,这已有足够的能量让喷出物的速度高达每秒数千公里 - 快星新的速度比慢新星快,并同时让光度从太阳的数倍增加至50,000至100,000倍。
只要伴星能继续的供应氢在白矮星的表面吸积,一颗白矮星就能反覆的爆发成为新星,例如蛇夫座RS,就是一颗已经知道有过6次爆发记录的新星(分别在1893、1933、1958、1967、1985和2006年)。最后,白矮星或是将燃料用尽,或是塌缩成为中子星,或是爆炸成为Ia超新星。
有时,新星会有足够的亮度,并且以肉眼就能清楚的看见,在最近的例子就是1975年明亮的天鹅座新星。这颗新星于,1975年8月29日出现在天鹅座的天津四北方约5度之处,视星等达到2.0等(与天津四的光度相似)。最靠近现在的是天蝎座V1280,在2007年2月17日亮度达到3.7等。
出现的机率和天文物理上的意义
天文学家以银河系每年粗略估计有20至60颗新星出现的经验,估计出现率为每年40颗。每年被发现的新星数量低于此一数值被归咎于距离的遥远和观测的偏差。比较之下,每年在仙女座大星系发现的新星数量更低,只有银河系的1/2到1/3。
观察新星喷发出星云的光谱,已经发现其中含有丰富的氦、碳、氮、氧、氖和镁等元素。新星对星际物质的贡献并不大,在银河系内只相当于超新星的1/50,红巨星和超巨星的1/200。
再发新星,像是蛇夫座RS(再发的周期大约是数十年)是罕见的。尽管理论上认为多数的新星- 即使不是全部 - 都会再发,然而时间的尺度可能要长达1,000年到100,000年。新星再现的时间间隔依靠白矮星质量吸积的速率、表面重力的强度;质量较大的白矮星吸积足够下次爆炸的燃料所需要的时间短于质量较低的。结果是,质量大的白矮星再发的间隔较短。
历史的意义
天文学家第谷·布拉赫在仙后座观察到[超新星SN 1572,并且在他的著作de stella nova(拉丁文,意思为与新星的接触)中描述时,给了新星这个名称。在书中,他以近处的物体应该会相对于恒星产生位置的改变,来论述说新星的距离非常遥远。虽然这是一颗超新星,而不是一颗传统的新星,但直到1930年代才考虑与改正了这个项目.。
新星作为距离的指标
新星有些特性可以做为距离的标准烛光,像是绝对星等的分布是双峰的,一个主峰值在-7.5等,另一个次要的在-8.8等;大致上在峰值之后的15天,会有相似的绝对星等(-5.5)。以新星建立的距离估计,和以造父变星对邻近的星系和星系团估计的距离比较,它们是比较准确的。。
白矮星上的大爆炸——新星
古希腊哲学家亚里士多德曾经认为星空是永远不变的。但是到了1572年,第古·布拉赫宣布在天上发现了一颗新星,这就是中国《明史稿》中的记载“明隆庆六年冬十月丙辰,彗星见于东北方,至万历二年四月乃没”所指的那个天体。时隔三十余年,开普勒又于1604年在蛇夫座中发现了一颗新星,这就是中国史籍中记载的出现在明朝万历三十二年的尾分客星。这样,“星空不变”的古老观念被打破了,实际上,公元前204年在牧夫座出现的一颗新星就被中国史书《汉书》记载了:“汉高帝三年七月有星孛于大角(牧夫座α),旬余乃入。”这是人类历史上对新星最早的记载之一。
到了近代,借助于望远镜和照相术的帮助,天文学家发现了更多的新星。在20世纪初天文学家们逐渐认识到,这些新星并不是新出现的恒星,而是原有的恒星因为某种原因发生爆炸时亮度急剧增加的结果。有的新星亮度变化极大,就被称为超新星。实际上,从恒星演化角度看,新星和超新星这两种爆发有着本质的不同。
一颗典型的新星,起亮度在几天之内可以增加一万倍以上,亮度的最大值可以维持几个小时,然后再逐渐转暗。转暗的速度比增亮时的速度要慢的多。
新星最亮的时候,其绝对光度可达太阳光度的10万倍。只不过它的距离太遥远了,在地球上的人们看来还是一颗星。新星爆发时释放出的能量可达〖10〗^38万焦。这意味着,它在几百天中释放的能量相当于我们的太阳在10万年中所产生能量的总和。根据对新星光谱的研究,天文学家们知道了关于新星的一些细节。新星爆发时,半径会增加到太阳半径的100~300倍,而爆发结束后,体积却又会缩小;爆发时,星壳无限制地向外膨胀,永远离开星核而去,变成了稀薄的星际介质;爆发时恒星损失的质量可达〖10〗^26千克,这差不多相当于太阳质量的万分之一。
为什么会出现新星爆发事件呢?观测证据表明,几乎所有的新星爆发都发生在双星系统之内,尤其是在那些密近双星上(如分光双星)。在这样的双星系统中,两颗子星靠得很近,以致物质可能从质量较大的子星转移到质量较小的子星上。如果密近双星系统是由一颗红巨星和一颗白矮星组成。当元素氢等物质从红巨星冲向白矮星时,由于白矮星的强大引力场,物质在它的周围形成了一个巨大的吸积盘。大量的物质坠落到白矮星的表面上,同时大量的引力势能转化为热能。当温度超过100万开时,氢核聚变被重新点燃了。核聚变释放出的能量又把白矮星表层加热到超过1000万开,这时就会发生新星爆发。爆发时向外抛出的物质,速度可达1100千米/秒。
1975年在天鹅座出现的新星是新星中的一个例外,因为天文学家始终未能证认出它属于一个双星系统。所以,使白矮星加热的吸积盘物质可能直接来自它周围相对稠密的星际介质,而不是来自一颗拌星。
新星
有时候,遥望星空,你可能会惊奇地发现:在某一星区,出现了一颗从来没有见过的明亮星星!然而仅仅过了几个月甚至几天,它又渐渐消失了。
这种“奇特”的星星叫做新星或者超新星。在古代又被称为“客星”,意思是这是一颗“前来作客”的恒星。
新星和超新星是变星中的一个类别。人们看见它们突然出现,曾经一度以为它们是刚刚诞生的恒星,所以取名叫“新星”。其实,它们不但不是新生的星体,相反,而是正走向衰亡的老年恒星。其实,它们就是正在爆发的红巨星。我们曾经不止一次提到,当一颗恒星步入老年,它的中心会向内收缩,而外壳却朝外膨胀,形成一颗红巨星。红巨星是很不稳定的,总有一天它会猛烈地爆发,抛掉身上的外壳,露出藏在中心的白矮星或中子星来。
在大爆炸中,恒星将抛射掉自己大部分的质量,同时释放出巨大的能量。这样,在短短几天内,它的光度有可能将增加几十万倍,这样的星叫“新星”。如果恒星的爆发再猛烈些,它的光度增加甚至能超过1000万倍,这样的恒星叫做“超新星”。
超新星爆发的激烈程度是让人难以置信的。据说它在几天内倾泄的能量,就像一颗青年恒星在几亿年里所辐射的哪样多,以致它看上去就像一整个星系那样明亮!
新星或者超新星的爆发是天体演化的重要环节。它是老年恒星辉煌的葬礼,同时又是新生恒星的推动者。超新星的爆发可能会引发附近星云中无数颗恒星的诞生。另一方面,新星和超新星爆发的灰烬,也是形成别的天体的重要材料。比如说,今天我们地球上的许多物质元素就来自那些早已消失的恒星。
国内爱好者发现的新星
1975年,国内天文爱好者独立发现V1500 CYG 天鹅座新星,当时在国内引起巨大轰动,但是因为不是第一发现而不被国际承认。
2008年4月,国内天文爱好者金伟彰与高兴,独立发现天鹅座新星V2468 CYG,9月国内天文爱好者孙国佑与高兴独立发现V1309 SCORPII ,这2次发现都因不是第一发现者,而不被国际承认,只能算独立发现。
2009年,5月29日的国际天文联合会通报(IAU)确认了,由国内天文爱好者孙国佑与高兴,共同发现得人马座新星V5582 SGR,这次发现也成就了我国业余天文爱好者的首次新星发现。
类星体
类星体,又称为似星体、魁霎或类星射电源,与脉冲星、微波背景辐射和星际有机分子一道并称为1960年代天文学“四大发现”。
20世纪六十年代,天文学家在茫茫星海中发现了一种奇特的天体,从照片看来如恒星但肯定不是恒星,光谱似行星状星云但又不是星云,发出的射电(即无线电波)如星系又不是星系,因此称它为“类星体”。类星体的发现,与宇宙微波背景辐射、脉冲星、星际分子并列为20世纪60年代天文学四大发现。
类星体的特点
类星体的显着特点是具有很大的红移,表示它正以飞快的速度在远离我们而去。类星体离我们很远,大约在几十亿光年以外,可能是目前所发现最遥远的天体,天文学家能看到类星体,是因为它们以光、无线电波或x射线的形式发射出巨大的能量。
类星体的总结
类星体是宇宙中最明亮的天体,它比正常星系亮1000倍。对能量如此大的物体,类星体却不可思议地小。与直径大约为10万光年的星系相比,类星体的直径大约为1 光天(light-day)。一般天文学家相信有可能是物质被牵引到星系中心的超大质量黑洞中,因而释放大量能量(喷发激烈射线)所致。这些遥远的类星体被认为是在早期星系尚未演化至较稳定的阶段时,当物质被导入主星系中心的黑洞增潻“燃料”而被“点亮”。
由于类星体是一个难解的天体,它奇特的现象如红移之谜,超光速的移动,它的能量来自哪里?它在挑战人类的即有物理观念,它的解决,可能使我们对自然规律的认识向前跨一大步。
【缘起】
从1960年起,人们对剑桥第三电波星表中(3C)一些不知意义、模糊的无线电波源,陆陆续续有下列的发现:
它们的光学体很小(光学直径<1"),和恒星很难区别:
从帕罗马天文台5m望远镜所拍照片中显示,它和恒星一样,都只是一个光点。
它们有极亮(非比寻常的亮)的表面:
在可见光及无线电波波段都此特性。
它们的光谱是连续光谱及强烈的发射谱线:
在1962/63年,由 M.Schmidt 测出这和那些已知的电波星系光谱相同。
事实上,测得的类星体的光谱主要有三部分:
由同步辐射造成的非热性连续光谱;
吸积作用造成极明亮的发射谱线;
星际介质造成的吸收谱线。
它们的光谱呈现巨大的红位移量(位移指数Z=△λ/λ)。
因此由哈勃定律推论,它们是极远的蓝色星系,可见光绝对亮度超过一般正常星系的100倍,而电波强度和CygA星系相当。
到此阶段的探查,我们将之冠上类星体Quasar之名(或谓类星电波源 Quasistellar Radio Source)。
【定名】
1965年 A.Sandage 发现许多类星体,它们的光学性质和类星电波源相同;都有紧密的结构,极亮的表面及蓝的颜色;但它们却没有辐射无线电波(或是太弱了,而没被测到),因此我们可将它们分为两类:
类星电波源QSR's:能用光学及电波段测出,这类比较少,占目前类星体总数的1/20。
类星体QSO's(或称电波宁静类星体):电波较弱,只能以光学测出。
今日,我们相信它们代表的是同一种天体,只不过有的电波辐射强度不同;科学家相信,具有强烈电波辐射的类星体可能是类星体「一生」中处于短暂的「发高烧」阶段的产物。因此,称之为类星电波源(quasars)或类星体(quasistellar objects)都可以;有必要时,再注意它有没有辐射电波即可。
目前,在可见光及电波波段的天空搜寻中,数千个类星体已被发现;例如 M.P. Veron-Cetty 及 P.Veron(1989)作的星表目录中有4,170个类星体,A.Hewit t和 G.Burbidge(1987)所出星表中3,570个附有红移资料的类星体。
【历史纪录】
最近的类星体-3C273(M.Schmidt所发现):
视星等mv=12.8(其余的比16等还暗),红移z=0.158(相当距离950Mpc.约等于31亿光年远)。
最亮的类星体-S50014+81:
绝对星等Mv=-33等(mv=16.5);z值为3.14。
最大红移指数(相当于最远)的类星体-PKS2000-300:
mv=19,z=3.78(记录已被取代,并不断刷新中!)。
不过在1986年后,发现越来越多更大红移的类星体,其中约有30个z值超过4的;最近的报告(1990年)指出,PC1247+3406的z值为4.90。值得一提的是,类星体的数目似乎以Z=2左右为分界;红移小于2的随着z值增大,数目也越多,而红移大于2的,分布趋势则相反,z值越大的类星体数目越小。
最早发现类星体巨大红移现象的,是 M.Schmidt 在分析3c 273光谱时顿悟的;他感觉那些强烈的发射谱线相对排列顺序与氢原子光谱的几条谱线很相似;不同的只是整个光谱都向红端(长波)移动了一大截。
类星体的红移量是如此的巨大,我们不能只是以简单的哈勃定律(距离d与z值成正比)来决定它的距离;而必须以广义相对论为基础的宇宙模式来解释它。
【与星系的关系】
类星体的绝对星等Mv在-25-- -33等之间(由哈勃常数Ho=50km/s·Mpc推算),这可推论出其光度在1012--1014L⊙之间(约4*1038--1041W),这代表类星体是宇宙最亮的天体;它们是遥远活跃星系的极亮核及塞佛特星系、N星系及电波星系强烈活动的延续。这些的星系的轮廓只有在最近的类星体3C273的光学影像中被辨认出,呈现模糊、扩张、云雾状的斑点;通常星系被比它亮很多的核的光芒所掩过,而呈现类星体的现象。只有到最近,以极灵敏的CCD侦测器及现代影像扩大技术,这才比较有可能测出那些z≦0.5的类星体及和它有关的星系(因z值越小之类星体距离越近,与其有关之母星系才不至于太暗)。减去类星体光度後的星系绝对星等在-21-- -23等之间,是直径40--150kpc的椭圆星系或漩涡星系。观测结果认为有强电波辐射的类星体可能属于椭圆星系,而无电波类星体则属于漩涡星系。
此外,在某些类星体中,其分立的子电波源间出现分离的相对速度居然快过光速的超光速运动现象!例如3C273;由巨大天线阵(VLA)从1977年到1980年,以波长2.8cm的无线电波波段观测结果显示,其分立两子电波源间分离速度高达11倍光速。
虽然,光速是物体运动速度的极限也是能量传递速度的极限;但这种看似不可思议的超光速现象,在视觉上却有可能造成超光速的现象。例如,在夜晚将探照灯射向高空,由于云层的反射,天空会出现亮点;当地面的探照灯缓慢转动时,在高空的亮点却以极快的速度在移动。如果这云层够高,亮点的速度甚至可以超过光速。以这模型来解释上述类星体中的现象,认为是由类星体中心母体喷出两股相反方向的粒子流(相当于探照灯的光),它照在星际介质上(相当于高空的云),从而激起电波辐射(相当于亮点);因此,只要中心母体有小小的摆动,粒子流照射所激起的辐射区就会迅速的移动;如此看来,这两辐射区相离速度超过光速就大有可能了。
【主要观测特点】
①类星体在照相底片上具有类似恒星的像,这意味着它们的角直径小于1″。极少数类星体有微弱的星云状包层,如3C48。还有些类星体有喷流状结构。②类星体光谱中有许多强而宽的发射线,包括容许谱线和禁线。最经常出现的是氢、氧、碳、镁等元素的谱线,氦线非常弱或者不出现,这只能用氦的低丰度来解释。现在普遍认为,类星体的发射线产生于一个气体包层,产生的过程与一般的气体星云类似。类星体的发射线很宽,说明气体包层中一定存在猛烈的湍流运动。有些类星体的光谱中有很锐的吸收线,说明产生吸收线的区域里湍流运动的速度很小。③类星体发出很强的紫外辐射,因此,颜色显得很蓝。光学波段连续光谱的能量分布呈幂律谱形式,为辐射强度,v为频率,α为谱指数,常大于零。光学辐射是偏振的,具有非热辐射性质(见热辐射和非热辐射)。另外,类星体的红外辐射也非常强。④类星射电源发出强烈的非热射电辐射。射电结构多数呈双源型,少数呈复杂结构,还有少数是致密的单源,角直径小于0″.001,至今都未能分辨开。致密源的位置通常都与光学源重合。射电辐射的频谱指数α平均为0.75。一般,α>0.4的称陡谱;α<0.4的称平谱。陡谱射电源多数是双源;平谱射电源多数是致密单源,它们的厘米波段辐射特别强。⑤类星体一般都有光变,时标为几年。少数类星体光变很剧烈,时标为几个月或几天。从光变时标可以估计出类星体发出光学辐射的区域的大小(几光日至几光年)。类星射电源的射电辐射也经常变化。观测还发现有几个双源型类星射电源的两子源,以极高的速度向外分离。光学辐射和射电辐射的变化没有周期性。⑥类星体的发射线都有很大红移。迄今为止,观测到的最大红移为3.53(OQ 172)。对于有吸收线的类星体来说,吸收线红移z吸一般小于发射线红移z发。有些类星体有好几组吸收线,分别对应于不同的红移,称为多重红移。例如,类星体PHL 957的发射线红移为2.69,吸收线红移有五组:2.67、2.55、2.54、2.31、2.23。⑦近年来的观测表明,有些类星体还发出X射线辐射。
【巨大红位移之谜】
根据同步电子辐射原理推论出,类星体中黑洞质量--108M⊙,所有辐射能(光度)--1039W≒1013L⊙。根据相对论E=m·c2推算其寿命约108年。推算出如此巨大能量之结果,使得一些天文学家质疑:决定距离的基础是否为哈勃红移关系?
一般认为红移所代表的可能性有三种:
哈勃红移
越远的星系红移效应越大;类星体是目前发最远的星系,它可能代表宇宙的边缘或最早的宇宙。
引力红移
就是从远离强引力场的地方观测,谱线会向长波的方向移动;但须要的引力场极大(约一亿个太阳质量的黑洞),且造成的谱型与类星体的不符。
局部红移
认为可能是某些星系高速喷出物质所造成之局部现象(与上述视线之超光速原理相同);支持的证据是,很多星系及类星体常成双或成群出现,而它们之间的红移值截然不同。反对的说法是,也有不少成群协同的类星体、星团和它们的母星系有相同的红移量。
其中以支持哈勃红移理论的证据最为有力。
寻找红移与星系相近的低红移类星体:
以z≦0.5为范围,果然找到很多与椭圆或漩涡星系有关而红移相近的类星体;而高红移星系实在太暗,难以测出,不适用此法。
双胞胎类星体的证据:
1979年 D.Walsh,R.F.Carswell 和 R.J.Weymann 吃惊的发现类星体QSO0957+561A及B不但距离极近(5.7"),星等同样是17等,z值同为1.41,甚至完全相同的光谱。令人怀疑他们根本是同一天体,只是被重力透镜影响光线偏折而呈二重像。后来果然在类星体B旁发现一模糊的云雾,测量结果发现它是造成此光学二重像效应z=0.39 的中介星系(介于我们与此类星体之间)。此发现意义极重大,不但印证了爱因斯坦广义相对论中重力透镜的预测,而且证明红移大(z=1.41)之类星体在红移小(z=0.39)星系之后,更支持了哈勃红移的理论。
重力透镜造成的光变:
当中介星系转动时,由于重力的作用,使其后方类星体的光度发生变化;理论上,我们可从观测到的类星体光变时间及影像空间角度,去推算类星体距离,再去印证哈勃红移所推算之距离是否正确。可惜,在类星体与我们之间常有无数物质,造成引力的多重影响,而不易以此法测出,有待将来进一步的改良观测技术。
吸收线的支持:
类星体中吸收谱线所测得的Zabs与发射谱线的z值不同,一般是Zabs≦Z;如果发射线z值是代表类星体的位置(距离),则其吸收线之Zabs则是类星体和我们之间许多的星际间物质吸收所造成(如图一中Lα森林区,就是Lα线被不同距离物质吸收,所呈多重红移之结果)。当(Z-Zabs)/Z≧0.01,代表是类星体和我们之间许多星系外部的洞区所造成。
此外,我们在高红移类星体吸收线中找到低红移星系(及类星体)之吸收线系统,而在低红移星系吸收线中找不到高红移类星体之吸收线,这可说明高红移星体的确是在低红移星系(类星体)的後面。
另外,一种很像类星体的怪东西,在1929年被发现并定名为BL蝎虎座天体;它的特征就是几乎没有特征。光度变化不规则,只有连续光谱,测不到它的谱线(可能太弱了)。因此,它的距离也很难定出。它那属于非热性之连续光谱在可见光部份比类星体陡。目前已发现100个左右。
到底类星体是个什么样的天体呢 ?它的外型像恒星,光谱像塞佛特星系,电波性质像电波星系……?而目前的认定是,它是宇宙在大霹雳后,最先形成的“星系”前身。但无疑的,它是一种非常活跃的天体;如果宇宙红移理论确实是对的,那类星体对於我们宇宙将扮演极重大的角色;它代表的是最远,最古老的宇宙。因此能从侧面映整个宇宙的演化。也由於它高度的亮及神秘的吸收线,更是我们研究宇宙中介物质(介于我们和宇宙边缘之间)的最佳利器。
类星体的最新解释
类星体是一种光度极高、距离极远的奇异天体。越来越多的证据显示,类星体实际是一类活动星系核(AGN)。而普遍认可的一种活动星系核模型认为,在星系的核心位置有一个超大质量黑洞,在黑洞的强大引力作用下,附近的尘埃、气体以及一部分恒星物质围绕在黑洞周围,形成了一个高速旋转的巨大的吸积盘。在吸积盘内侧靠近黑洞视界的地方,物质掉入黑洞里,伴随着巨大的能量辐射,形成了物质喷流。而强大的磁场又约束着这些物质喷流,使它们只能够沿着磁轴的方向,通常是与吸积盘平面相垂直的方向高速喷出。如果这些喷流刚好对着观察者,就能观测到类星体。
星 团
恒星往往成群分布。一般地,我们把恒星数在十个以上而且在物理性质上相互联系的星群叫做“星团”。比如金牛座中的“昴星团”、“毕星团”,巨蟹座的蜂巢星团等。
星团是指恒星数目超过10颗以上,并且相互之间存在物理联系(引力作用)的星群。
由十几颗到几千颗恒星组成的,结构松散,形状不规则的星团称为疏散星团,他们主要分布在银道面因此又叫做银河星团,主要由蓝巨星组成,例如昴宿星团(又名昴星团);上万颗到几十万颗恒星组成,整体像圆形,中心密集的星团称为球状星团。
星团是由于物理上的原因聚集在一起并受引力作用束缚的一群恒星,其成员星的空间密度显著高于周围的星场.星团按形态和成员星的数量等特征分为两类:疏散星团和球状星团.
星团的命名,一般采用相应的星表中的号码.最常用的是梅西叶星表,简写为"M".它只包括了较亮的星团.较完全的是"NGC"星表,有时还用"IC"星表.这些星表中不仅仅包括星团,还有星云和星系.
球状星团
球状星团呈球星或扁球形,与疏散星团相比,它们是紧密的恒星集团.这类星团包含1万到1000万颗恒星,成员星的平均质量比太阳略小.用望远镜观测,在星团的中央恒星非常密集,不能将它们分开.如猎犬座中的M3和.人马座中的M22等等
在银河系中已发现的球状星团有150多个.它们在空间上的分布颇为奇特,其中有三分之一就在人马座附近仅占全天空面积百分之几的范围内.天文学家最初正是根据这个现象领悟到太阳离开银河系中心相当远,而银河系的中心就在人马星座方向.跟疏散星团不同,球状星团并不向银道面集中,而是向银河系中心集中.它们离开银河系中心的距离极大多数在6万光年以内,只有很少数分布在更远的地方.球状星团的光度大,在很远的地方也能看到,而且被浓密的星际尘埃云遮掩的可能性不大,因此未发现的球状星团数量大致不超过100个,总数比疏散星团少得多.
球状星团的直径在15至300多光年范围内,成员星平均空间密度比太阳附近恒星空间密度约大50倍,中心密度则大1000倍左右.球状星团中没有年轻恒星,成员星的年龄一般都在100亿年以上,并据推测和观测结果,有较多死亡的恒星.
疏散星团
疏散星团形态不规则,包含几十至二.三千颗恒星,成员星分布得较为松散,用望远镜观测,容易将成员星一颗颗地分开.少数疏散星团用肉眼就可以看见,如金牛座中的昴星团(M45)和毕星团.巨蟹座中的鬼星团(M44)等等.
在银河系中已发现的疏散星团有1000多个.它们高度集中在银道面的两旁,离开银道面的距离一般小于600光年左右.大多数已知道疏散星团离开太阳的距离在1万光年以内.更远的疏散星团无疑是存在的,它们或者处于密集的银河背景中不能辨认,或者受到星际尘埃云遮挡无法看见.据推测,银河系中疏散星团的总数有1万到10万个.
疏散星团的直径大多数在3至30多光年范围内.有些疏散星团很年轻,与星云在一起(例如昴星团),甚至有的还在形成恒星.
昴星团
昴星团位于金牛座.金牛座位于赤经4时20分,赤纬17度,在英仙和御夫两座之南,猎户座之北.座内有著名的昴星团和毕星团,以及M1蟹状星云,以"两星团加一星云"而闻名.金牛座α星我国古代称毕宿五,是颗橙色的1等星,在全天亮星中排第13位.座内共有亮于4等的星28颗.金牛宫是黄道第二宫,每年4月20日前后太阳到达这一宫,那时的节气是谷雨.
金牛座毕宿五与狮子座轩辕十四.天蝎座心宿二和南鱼座北落师门共四颗亮星,在天球上各相差约90度,正好每个季节一颗,被合称为黄道带的"四大天王".连接猎户座γ星和毕宿五,向西北方延长一倍左右的距离,是一个著名的疏散星团--昴星团.眼力好的人可以看到这个星团中的7颗亮星,所以我国古代又称它为"七簇星".昴星团距离我们417光年,直径达13光年,用大型望远镜观察,可发现昴星团有280多颗星。另一个疏散星团叫毕星团,它位于毕宿五附近,但毕宿五不是它的成员.毕星团距离我们143光年,是离我们最近的星团.毕星团用肉眼可看到五.六颗星,实际上大约有300颗.金牛座ζ星附近,有一个著名的大星云,英国的一位天文学家根据它的形状把它命名为"蟹状星云".本世纪天文学家推断出蟹状星云是1054年一次超新星爆发的产物.
球状星团——半人马座ω
和昂宿星团这样的疏散星团相对应的,即星团家族中的另一半——球状星团。银河系中约有500个球状星团,全天最亮最大的是半人马座ω星团(NGC5139)(Omega centauri)。1677年,天文学家哈雷发现这个星团时误以为是一颗恒星。因为用肉眼虽然能直接看到它,却不能分辨出它内部团聚的恒星。人们给了它一个希腊字母,称其为半人马座ω(音omega,奥米加)。直到1830年,英国天文学家赫谢尔(John Herschel)才首先发现它是星团而不是星云。ω星团位于半人半马的腰眼附近。半人马座ω距离地球约17000光年,年龄大约120亿岁。它的密度大得惊人,包括的几百万颗恒星的范围内,它中心部分的恒星彼此相距平均只有0.1光年,而离太阳系最近的恒星也在4光年之外。半人马座ω是全天最明亮、美丽的球状星团,可惜位于南天。北半球中纬度以北的人们无缘与它会面,不过北纬25°以南地区的人们可以看见完整的半人马座。对南半球的观测者来说,半人马做属于秋夜星座,但在中国南方几个省份于春天晚上可看到。
在科学家大量观测后,发现半人马座ω不同于其他的球状星团。它包含的恒星数量很庞大,一般的球状星团包含有成千上万颗,甚至几十万颗恒星,而ω星团的成员达到了100万颗。
移动星团
有些银河星团的成员星自行速度和方向很相近,有从一个辐射点分散开来或向一个会聚点会集的倾向。这种可定出辐射点或会聚点的星团被称为移动星团。已知的移动星团有毕宿星团、昂宿星团、大熊星团、鬼宿星团、英仙星团、天蝎一半人马星团和后发星团等七个星团。
星云
星云 (Nebula) 包含了除行星和彗星外的几乎所有延展型天体。它们的主要成份是氢,其次是氮,还含有一定比例的金属元素和非金属元素。近年来的研究还发现含有有机分子等物质。星云是由星际空间的气体和尘埃结合成的云雾状天体。星云里的物质密度是很低的,若拿地球上的标准来衡量的话,有些地方是真空的。可是星云的体积十分庞大,常常方圆达几十光年。所以,一般星云较太阳要重的多。
星云的形状是多姿多态的。星云和恒星有着“血缘”关系。恒星抛出的气体将成为星云的部分,星云物质在引力作用下压缩成为恒星。在一定条件下,星云是能够互相转化的。
最初所有在宇宙中的云雾状天体都被称作星云。后来随著天文望远镜的发展,人们的观测水准不断提高,才把原来的星云划分为星团、星系和星云三种类型。
【星云的发现】
1758年8月28日晚,一位名叫梅西耶的法国天文学爱好者在巡天搜索彗星的观测中,突然发现一个在恒星间没有位置变化的云雾状斑块。梅西耶根据经验判断,这块斑形态类似彗星,但它在恒星之间没有位置变化,显然不是彗星。这是什么天体呢?在没有揭开答案之前,梅西耶将这类发现(截止到1784年,共有103个)详细地记录下来。其中第一次发现的金牛座中云雾状斑块被列为第一号,既M1,“M”是梅西耶名字的缩写字母。
梅西耶建立的星云天体序列,至今仍然在被使用。他的不明天体记录(梅西叶星表)发表于1781年,引起英国著名天文学家威廉·赫歇尔的高度注意。在经过长期的观察核实后,赫歇尔将这些云雾状的天体命名为星云。
【不是星云的星云】
由于早期望远镜分辨率不够高,河外星系及一些星团看起来呈云雾状,因此把它们也称之为星云。哈勃测得仙女座大星云距离后,证实某些星云其实是和我们银河系相似的恒星系统。由于历史习惯,某河外星系有时仍被称之为星云,例如大小麦哲伦星云,仙女座大星云等。
【有关星际物质(星云)】
当我们提到宇宙空间时,我们往往会想到那里是一无所有的、黑暗寂静的真空。其实,这不完全对。恒星之间广阔无垠的空间也许是寂静的,但远不是真正的“真空”,而是存在着各种各样的物质。这些物质包括星际气体、尘埃和粒子流等,人们把它们叫做“星际物质”。
星际物质与天体的演化有着密切的联系。观测证实,星际气体主要由氢和氦两种元素构成,这跟恒星的成分是一样的。其实,恒星就是由星际气体“凝结”而成的。星际尘埃是一些很小的固态物质,成分包括碳合物、氧化物等。
星际物质在宇宙空间的分布并不均匀。在引力作用下,某些地方的气体和尘埃可能相互吸引而密集起来,形成云雾状。人们形象地把它们叫做“星云”。按照形态,银河系中的星云可以分为弥漫星云、行星状星云等几种。
同恒星相比,星云具有质量大、体积大、密度小的特点。一个普通星云的质量至少相当于上千个太阳,半径大约为10光年。
星云常根据它们的位置或形状命名,例如:猎户座大星云,天琴座大星云
【星云的种类】
1.发射星云
发射星云是受到附近炽热光量的恒星激发而发光的,这些恒星所发出的紫外线会电离星云内的氢气(HⅡ regions),令它们发光。
发射星云能辐射出各种不同色光的游离气体云(也就是电浆)。造成游离的原因通常是来自邻近恒星辐射出来的高能量光子。这些不同的发射星云有些类型是氢Ⅱ区,也就是年轻恒星诞生的场所,大质量恒星的光子是造成游离的来源;而行星状星云是垂死的恒星抛出来的外壳被曝露的高热核心加热而被游离的。
通常,一颗年轻的恒星在诞生的过程中都会造成周围的部分气体游离,虽然只有质量大且热的恒星造成能造成大量的游离,但一群年轻的星团经常也可以造成相同的结果。
星云的颜色取决于化学组成和被游离的量,由于在星际间的气体绝大部分都是在相对下只要较低能量就能游离的氢,所以许多发射星云都是红色的。如果有更高的能量能造成其他元素的游离,那麽绿色和蓝色的云气都有可能出现。经由对星云光谱的研究,天文学家可以推断星云的化学元素。大部分的发射星云都有90%的氢,其余的部份则是氦、氧、氮和其他的元素。
在北半球,最著名的发射星云是在天鹅座的北美洲星云(NGC 7000)和网状星云(NGC 6960/6992);在南半球最好看的则是在人马座的礁湖星云M8/NGC 6523和猎户座的猎户星云(M42)。在南半球更南边的则是明亮的卡利纳星云(NGC 3372)。
发射星云经常会有黑斑出现,这是云气中的尘埃阻挡了光线造成的。发射星云和尘埃的组合经常会造成一些看起来很有趣的天体,而许多这一类的天体都会有传神或有比喻的名称,例如北美洲星云和锥星云。
有些星云是由反射星云和发射星云结合在一起的,例如三裂星云。
2.反射星云
反射星云是靠反射附近恒星的光线而发光的,呈蓝色。
[由于散射对蓝光比对红光更有效率(这与天空呈现蓝色和落日呈现红色的过程相同),所以反射星云通常都是蓝色]
以天文学的观点,反射星云只是由尘埃组成,单纯的反射附近恒星或星团光线的云气。这些邻近的恒星没有足够的热让云气像发射星云那样因被电离而发光,但有足够的亮度可以让尘粒因散射光线而被看见。因此,反射星云显示出的频率光谱与照亮他的恒星相似。
3..暗星云
如果气体尘埃星云附近没有亮星,则星云将是黑暗的,即为暗星云。暗星云由于它既不发光,也没有光供它反射,但是将吸收和散射来自它后面的光线,因此可以在恒星密集的银河中以及明亮的弥漫星云的衬托下发现。
暗星云的密度足以遮蔽来自背景的发射星云或反射星云的光(比如马头星云),或是遮蔽背景的恒星。
天文学上的消光通常来自大的分子云内温度最低、密度最高部份的星际尘埃颗粒。大而复杂的暗星云聚合体经常与巨大的分子云联结在一起,小且孤独的暗星云被称为包克球。
这些暗星云的形成通常是无规则可循的:它们没有被明确定义的外型和边界,有时会形成复杂的蜒蜒形状。巨大的暗星云以肉眼就能看见,在明亮的银河中呈现出黑暗的补丁。
在暗星云的内部是发生重要事件场所,比如恒星的形成。
4..超新星遗迹
超新星遗迹也是一类与弥漫星云性质完全不同的星云,它们是超新星爆发后抛出的气体形成的。与行星状星云一样,这类星云的体积也在膨胀之中,最后也趋于消散。
最有名超新星遗迹是金星座中的蟹状星云。它是由一颗在1054年爆发的银河系内的超新星留下的遗迹。在这个星云中央已发现有一颗中子星,但因为中子星体积非常小,用光学望远镜不能看到。它是因为它有脉冲式的无线电波辐射而发现的,并在理论上确定为中子星。
5.弥漫星云
弥漫星云正如它的名称一样,没有明显的边界,常常呈现为不规则的形状,犹如天空中的云彩,但是它们一般都得使用望远镜才能观测到,很多只有用天体照相机作长时间曝光才能显示出它们的美貌。它们的直径在几十光年左右,密度平均为每立方厘米10-100个原子(事实上这比实验室里得到的真空要低得多)。它们主要分布在银道面(HOTKEY)附近。比较著名的弥漫星云有猎户座大星云、马头星云等。弥漫星云是星际介质集中在一颗或几颗亮星周围而造成的亮星云,这些亮星都是形成不久的年青恒星。
6.行星状星云
行星状星云呈圆形、扁圆形或环形,有些与大行星很相像,因而得名,但和行星没有任何联系。不是所有行星状星云都是呈圆面的,有些行星状星云的形状十分独特,如位于狐狸座的M27哑铃星云及英仙座中M76小哑铃星云等。
样子有点像吐的烟圈,中心是空的,而且往往有一颗很亮的恒星在行星状星云的中央,称为行星状星云的中央星,是正在演化成白矮星的恒星。中央星不断向外抛射物质,形成星云。可见,行星状星云是恒星晚年演化的结果,它们是如太阳差不多质量的恒星演化到晚期,核反应停止后,走向死亡时的产物。比较著名的有宝瓶座耳轮状星云和天琴座环状星云,这类星云与弥漫星云在性质上完全不同,这类星云的体积处于不断膨胀之中,最后趋于消散。行星状星云的“生命”是十分短暂的,通常这些气壳会在数万年之内便会逐渐消失。
【星云和恒星的转化】
星云的物质密度十分稀薄,主要成分是氢。根据理论推算,星云的密度超过一定的限度,就要在引力作用下收缩,体积变小,逐渐聚集成团。一般认为恒星就是星云在运动过程中,在引力作用下,收缩、聚集、演化而成的。恒星形成以后,又可以大量抛射物质到星际空间,成为星云的一部分原材料。所以,恒星与星云在一定条件下是可以互相转化的。恒星也有自己的生命史,它们从诞生、成长到衰老,最终走向死亡。它们大小不同,色彩各异,演化的历程也不尽相同。恒星与生命的联系不仅表现在它提供了光和热。实际上构成行星和生命物质的重原子就是在某些恒星生命结束时发生的爆发过程中创造出来的。
星风
星风(stellar wind)
一种从恒星不断向外运动的物质流.星风现象是恒星在演化中逐渐损失质量的过程.星风的概念是从太阳风的启示得来的.目前,太阳风已有直接的观测证据;关于星风的存在也从恒星光谱中发现了间接证据.例如,在所有的 M型巨星和超巨星中,强的吸收线都分成两条谱线,一条宽而浅,另一条锐而深.按照恒星谱线形成的理论,宽而浅的吸收线形成于光球之中,锐而深的吸收线则形成于光球之外的所谓星周物质即包层中.锐而深的星周吸收线相对于光球宽线有一个紫移,相应的速度为10公里/秒,说明包层正以此速度向外扩张.若包层中存在类似于对太阳风加速的机制,或者锐吸收线形成的包层位于远离恒星光球的地方,就可把它解释为星风.事实上,在双星武仙座α的目视伴星的光谱中,也可看到锐的星周吸收线;从谱线位移求得星周包层的运动速度达到10公里/秒.这就表明,在距离武仙座α主星至少700个天文单位的地方仍存在着吸收物质;且物质的外流速度大于该处的逃逸速度(1~2公里/秒).在其他的分光双星中,也观测到类似这样的现象.此外,在O,B型超巨星(见恒星光谱分类)的光谱中,普遍存在所谓的天鹅座P型星的谱线轮廓,即发射线旁边出现紫移的吸收线.在1000~2000埃之间的紫外光谱中,从吸收分线的位移可知视向速度为1,400公里/秒,甚至达3,000公里/秒.上述观测资料表明,这些星正在抛出热的气壳,以每秒上千公里的速度向外膨胀.这种现象可认为是存在星风的间接观测证据.
对星风的起源和物理过程目前尚未完全了解.一般认为,在O,B型星中,快速自转和辐射压对星风的形成起着重要作用.至于冷巨星星风的起源,目前存在两种理论.一种理论认为,星风类似于太阳风,是由于某种波(例如声波等)的能量不断输送给色球-星冕而形成的.另一种理论认为,星风是由于接近恒星光球处的尘埃受恒星本身辐射压驱动而形成的.可能存在尘埃的地方是:①恒星光球,色球与星冕之间温度极低的区域;②星周包层中距恒星某个距离处,由于下面物质的膨胀以及辐射的损失而使物质足够冷却,达到在适当压力下气态-固态相变的温度范围.星风起源理论还存在很多问题.事实上,甚至太阳风的起源问题也仍然是太阳物理中最困难的问题之一.
有的恒星因星风而损失的质量是很小的,例如太阳的质量损失率是每年2×10-14太阳质量,不足以影响恒星内部结构和演化进程.然而,星风会不断地带走恒星的自转角动量,从而对自转起着制动的作用.星风对恒星演化的影响仍在研究中.
恒星风
星风(Stellar Wind)是恒星表面发出的物质流,是恒星质量流失的一种手段。星风在所有恒星中都普遍存在,但速度和强度有很大差别。
太阳发出的星风通常称为太阳风,速度大约为每小时200-300公里。从冕洞吹出的太阳风速度则要大一些,大约每小时700公里。太阳通过星风损失质量的速率约为每年10-14倍太阳质量,在一生中通过星风大约会损失掉0.01%的质量,因此星风对其演化的影响可以忽略不计。红巨星星风的速度较低,大约为每小时20-60公里。但是由于其星风的密度很大,并且红巨星的表面积很大,由于星风造成的质量损失可以达到每年10-8-10-5倍太阳质量。恒星的质量越小,星风损失质量的速率越小,对于太阳这样的中小质量恒星的演化过程来说,星风造成的质量损失可以忽略不计。而对于大质量恒星,如沃尔夫-拉叶星,星风造成的质量损失率很大,在其一生中质量会发生明显的变化,星风对其演化过程具有很重要的影响。
一般认为,在太阳这样的质量较小、温度较低的恒星中,星风是由于温度很高的冕层发生压力扩张造成的。对于质量较大、较“热”的恒星,冕层的温度和恒星表面差不多,这时星风主要是由辐射压驱动的。
哈勃望远镜发回的最新照片显示了一个巨大的宇宙气体洞穴,它是由一股强烈的恒星风与气体碰撞形成的。
一颗新星所发出的湍急粒子流在高温的情况下,以每小时700万公里的速度向外喷射时,这样的气洞才能形成。与之相比,太阳所发出的恒星风强度还不足每小时150万公里。
这样的新星在宇宙中并不是惟一的,它的周围环绕着气体,由于恒星风以巨大的力量急速向外喷射,因此气体被推出了原有的位置。
美国宇航局称,这样的气洞在成熟的巨大星体群以及恒星群体的周围曾经被发现,但是这个叫做N44F的单个星体也能出现这样的情况还是第一次。
对于天文学家来说还有着更多的引人之处,它的中心有几个冷灰尘和气体组成的柱形结构,与哈勃十年前拍摄到鹰状星云中的柱状结构很像。只是N44F的柱形结构看上去更小,因为它距离我们比鹰状星云更远。N44F距我们有16万光年之远,它属于体积庞大的麦哲伦星云。
这张照片是哈勃望远镜的2号广角行星照相机拍摄的。
经过数月的考虑之后,美国航天局这周决定让哈勃继续服役,并准备用一个加拿大机器人对它进行为期三年的整修,这个机器人将更换一些坏的仪器并且安装一些新的器械。
哈勃的替代品詹姆士·韦伯太空望远镜,最早预计在2011年发射升空。
超新星
超新星:英文名为supernova,也称:nova。
理论而言,质量介于太阳的8~25倍之间的恒星会在一场超新星爆炸中结束自己的生命。当这颗恒星耗尽所有可用的燃料,它就会突然失去一直支撑自身重量的压力,它的核心坍缩成为一颗中子星——一颗毫无生气的超致密残骸,外侧的气体包层则会以5%的光速抛射出去
当恒星爆发时的绝对光度超过太阳光度的100亿倍、中心温度可达100亿摄氏度,新星爆发时光度的10万倍时,就被天文学家称为超新星爆发了。
一颗超新星在爆发时输出的能量可高达(10)^43焦,这几乎相当于我们的太阳在它长达100亿年的主序星阶段输出能量的总和。超新星爆发时,抛射物质的速度可达10000千米/秒,光度最大时超新星的直径可大到相当于太阳系的直径。1970年观测到的一颗超新星,在爆发后的30天中直径以5000千米/秒的速度膨胀,最大时达到3倍太阳系直径。在这之后直径又开始收缩。
根据现在的认识,超新星爆发事件就是一颗大质量恒星的“暴死”。对于大质量的恒星,如质量相当于太阳质量的8~20倍的恒星,由于质量的巨大,在它们演化的后期,星核和星壳彻底分离的时候,往往要伴随着一次超级规模的大爆炸。这种爆炸就是超新星爆发。现已证明,1572年和1604年的新星都属于超新星。在银河系和许多河外星系中都已经观测到了超新星,总数达到数百颗。可是在历史上,人们用肉眼直接观测到并记录下来的超新星,却只有6颗。
超新星的由来
恒星中心开始冷却,它没有足够的热量平衡中心引力,结构上的失衡就使整个星体向中心坍缩,造成外部冷却而红色的层面变热,如果恒星足够大,这些层面就会发生剧烈的爆炸,产生超新星。大质量恒星爆炸时光度可突增到太阳光度的上百亿倍,相当于整个银河系的总光度。恒星爆发的结果:(1)恒星解体为一团向四周膨胀扩散的气体和尘埃的混合物,最后弥散为星际物质,结束恒星的演化史。(2)外层解体为向外膨胀的星云,中心遗留下部分物质坍缩为一颗高密度天体,从而进入恒星演化的晚期和终了阶段。 中国古代天文学家观测到的1054年爆发的超新星的遗迹。在一个星系中,超新星是罕见的天象,但在星系世界内,每年却都能观测到几十颗。1987年2月23日,一位加拿大天文学家在大麦哲伦星云中发现了一颗超新星,这是自1604年以来第一颗用肉眼能看到的超新星,这颗超新星被命名为“1987A”
时间 方位 视亮度 观测、记录者
185半人马座 比金星亮中国人
369仙后座 比木星亮 中国人
1006豺狼座 比金星亮 中国、日本、朝鲜、阿拉伯人
1054金牛座 比金星亮 中国、日本、阿拉伯、印度人
1572 仙后座 与金星相同 布拉赫等
1604蛇夫座 介于天狼星和木星之间 中国人和开普勒、伽利略等
出现超新星爆发这样的宇宙级“暴力事件”概率有多大呢?虽然在每个星系中这一概率是很小的,但由于现在能观测到很多河外星系,所以在每年中都能观测到相当多的河外超新星事件。可是,从1604年以来,在我们银河系中还没有再次观测到超新星。这可能是因为宇宙尘埃的存在遮挡住了出现在银河系的某个角落中的超新星的光芒。
超新星的分类
天文学家把超新星按它们光谱上的不同元素的吸收线来分成数个类型:
● I型:没有氢吸收线
● Ia型:没有氢、氦吸收线,有硅吸收线
● Ib型:没有氢吸收线,有氦吸收线
● Ic型:没有氢、氦、硅吸收线
● II型:有氢吸收线
超新星分类法(Supernova taxonomy)
类型 特征
I型超新星
Ia超新星 缺乏氢和氦,光谱的峰值中以游离硅的615.0纳米波长的光最为明显。
Ib超新星未游离的氦原子(He I)的587.6纳米,和没有强烈的硅615纳米吸收谱线。
Ic超新星没有或微弱的氦线,和没有强烈的硅615纳米吸收谱线。
II型超新星
II-P超新星 在光度曲线上有一个"高原区"。
II-L超新星光度曲线(星等对时间的改变,或光度对时间呈指数变化)呈"线性"的衰减。
如果一颗超新星的光谱不包含氢的吸收线,那它就会被归入I型,不然就是II型。一个类型可根据其他元素的吸收线再细分。天文家认为这些观测差别代表这些超新星不同的来源。他们对II型的来源理论满肯定,但是虽然天文有一些意见解释I型超新星发生的方法,这些意见比较不肯定。
Ia型的超新星没有氦,但有硅。它们都是源于到达或接近钱德拉塞卡极限的白矮星的爆发。一个可能性是那白矮星是处于一个密近双星系统中,它不断地从它的巨型伴星吸收物质,直至它的质量到达钱德拉塞卡极限。那时候电子简并压力再不足以抵销星体本身的引力,结果是白矮星会塌缩成中子星或黑洞,塌缩的过程可以把剩下的碳原子和氧原子融合。而最后核融合反应所产生冲击波就把那星体炸成粉碎。这与新星产生的机制很相似,只是该白矮星未达钱德拉塞卡极限,不会塌缩,能量是来自积聚在其表面上的氢或氦的融合反应。
亮度的突然增加是由爆发中释放的能量所提供的,爆发以后亮度不会即时消失,而是会在一段长时间中慢慢地下降,那是因为放射性钴衰变成铁而放出能量。
Ib超新星有氦的吸收线,而Ic超新星则没有氦和硅的吸收线,天文学家对它们产生的机制还是不太清楚。一般相信这些星都是正在结束它们的生命(如II型),但它们可能在之前(巨星阶段)已经失去了氢(Ic则连氦也失去了),所以它们的光谱中没有氢的吸收线。Ib超新星可能是沃尔夫-拉叶型恒星塌缩的结果。
如果一颗恒星的质量很大,它本身的引力就可以把硅融合成铁。因为铁原子的比结合能已经是所有元素中最高的,把铁融合是不会释放能量,相反的能量反而会被消耗。当铁核心的质量到达钱德拉塞卡极限,它就会即时衰变成中子并塌缩,释放出大量携带着能量的中微子。中微子将爆发的一部份能量传到恒星的外层。当铁核心塌缩时候所产生的冲击波在数个小时后抵达恒星的表面时,亮度就会增加,这就是II型超新星爆发。而视乎核心的质量,它会成为中子星或黑洞。
II型超新星也有一些小变型如II-P型和II-L型,但这些只是描述了光度曲线图的不同(II-P的曲线图有暂时性的平坦地区,II-L则无),爆发的基本原理没有太大差别。
还有一类被称为“超超新星”的理论爆发现象。超超新星指一些质量极大恒星的核心直接塌缩成黑洞并产生了两股能量极大、近光速的喷流,发出强烈的伽傌射线。这有可能是导致伽玛射线暴的原因。
I型超新星一般都比II型超新星亮。
(下图)在一个大质量、演变的恒星(a)元素成洋葱的壳层状进行融合,形成铁芯(b) 并且达到钱德拉塞卡质量和开始塌缩。核心的内部被压缩形成中子(c),造成崩落的物质反弹(d)和形成向外传播的冲击波(红色)。冲积波开始失去作用(e),但是中微子的加入使交互作用恢复活力。周围的物质被驱散(f),留下的只有被简并的残骸。
观测及其意义
除了在可见光区观测到的超新星遗迹外,通过专门用来观测来自太空的X射线的人造卫星“爱因斯坦天文台”,人类发现了不少天上的X射线源,其中有30个以上是X射线超新星遗迹。1572年出现的隆庆彗星即第古新星,就留下了X射线遗迹。超新星冲击波使得星际介质温度高达几百万开并辐射出强烈的X射线。这是一颗典型的Ⅰ型超新星。
使用射电望远镜可以发现仅由最稀薄气体构成的超新星遗迹。比如,是射电天文学家最先发现了仙后座A这一超新星遗迹,后来在光学波段也发现了它的极暗弱的对应体。
超新星爆发和宇宙线的产生也有一定的关系。星际介质中的粒子运动速度一般都在每秒几十千米范围内,但是也有某些特殊情况——有的粒子运动速度可以接近光速,这就是宇宙线。宇宙线是由一些物质粒子如电子、质子等组成的,在本质上完全不同于电磁波。一般说来,由于地球大气对宇宙线的吸收作用,有探测宇宙线必须到大气层之外。如果搭乘气球上升到50千米的高空,就可以用底片拍摄宇宙线的踪迹。只有极少数能量极高的宇宙线可以到达地球表面。但是,当高能宇宙线与地球大气发生作用时,会引发一种闪光效应,同时产生二级宇宙线,在地球表面探测二级宇宙线是相对容易的。
实验表明,一些能量较低的宇宙线受到太阳活动的影响。比如,太阳活动有一个11年左右的周期,而观测到的低能宇宙线也随着这个周期而有所变化。另外,当太阳活动增强时,会使得地球周围的磁场增强,从而使在地球上观测到的宇宙线活动减弱。相反地,宇宙线流量的最大值往往出现在太阳耀斑等活动最小的时刻。观测也表明,绝大部分宇宙线是来自遥远的宇宙深处的超新星爆发。
因为宇宙线常常会因为星际磁场的作用而改变运动方向,我们很难判断它的辐射源在哪里。但宇宙线在与星际介质发生作用时,会辐射出г射线;而г射线是电磁波,运动方向不再受磁场的影响。美国宇航局曾发射了专门观测宇宙г射线的人造卫星。观测结果表明,宇宙г射线的分布与发现的超新星的分布有很好的相关性。这就在很大程度上支持了宇宙线来自超新星爆发的观点。
超新星事件和新星事件还有一个本质性的区别,即新星的爆发只发生在恒星的表面,而超新星爆发发生在恒星的深层,因此超新星爆发的规模要大的多。超新星爆发时散落到空间的物质,对新的星际介质乃至新的恒星的形成有着重要的贡献,但这些物质来自死亡恒星的外壳。
超新星的研究用途
超新星处于许多不同天文学研究分支的交汇处。超新星作为许多种恒星生命的最后归宿,可用于检验当前的恒星演化理论。在爆炸瞬间以及在爆炸后观测到的现象涉及各种物理机制,例如中微子和引力波发射、燃烧传播及爆炸核合成、放射性衰变及激波同星周物质的作用等。而爆炸的遗迹如中子星或黑洞、膨胀气体云起到加热星际介质的作用。
超新星在产生宇宙中的重元素方面扮演着重要角色。大爆炸只产生了氢、氦以及少量的锂。红巨星阶段的核聚变产生了各种中等质量元素(重于碳但轻于铁)。而重于铁的元素几乎都是在超新星爆炸时合成的,它们以很高的速度被抛向星际空间。此外,超新星还是星系化学演化的主要“代言人”。在早期星系演化中,超新星起了重要的反馈作用。星系物质丢失以及恒星形成等可能与超新星密切相关。
由于非常亮,超新星也被用来确定距离。将距离同超新星母星系的膨胀速度结合起来就可以确定哈勃常数以及宇宙的年龄。在这方面,Ia型超新星已被证明是强有力的距离指示器。最初是通过标准烛光的假定,后来是利用光变曲线形状等参数来标定化峰值光度。作为室女团以外最好的距离指示器,其校准后的峰值光度弥散仅为8%,并且能延伸到V> 30,000 km s-1的距离处。Ia 超新星的哈勃图(更确切地说是星等-红移关系)现在成为研究宇宙膨胀历史的最强有力的工具:其线性部分用于确定哈勃常数;弯曲部分可以研究膨胀的演化,如加速,甚至构成宇宙的不同物质及能量组分。利用Ia超新星可用作“标准烛光”的性质还可研究其母星系的本动。高红移Ia 超新星的光变曲线还可用于检验宇宙膨胀理论。可以预计由于宇宙膨胀而引起的时间膨胀效应将会表现在高红移超新星光变曲线上。观测数据表明红移z处的Ia 超新星光变曲线宽度为z= 0处的 (1+z) 倍.这为膨胀宇宙理论提供了又一个有力的支持。某些II型超新星也可用于确定距离。II-P型超新星在平台阶段抛射物的膨胀速度与它们的热光度存在相关,这也用来进行距离测定。经上述相关改正后,原来II-P型超新星V波段的~1星等的弥散可降到~0.3 星等的水平,这提供了另一种测独立于SN Ia的测定距离的手段。此外,II型超新星的射电发射也似乎具有可定量的性质,如6cm的光变曲线峰与爆炸后6cm峰出现的时间存在相关,这也可用来进行距离估计。
球状星团
定义:在星系轨道上由恒星群组成的古老的球形星团,最多可包含100万颗恒星。
球状星团由成千上万,甚至几十万颗恒星组成,外貌呈球形,越往中心恒星越密集。
球状星团里的恒星平均密度比太阳周围的恒星密度高几十倍,而它的中心附近则要大数万倍。同一个球状星团内的恒星具有相同的演化历程,运动方向和速度都大致相同,它们很可能是在同时期形成的。它们是银河系中最早形成的一批恒星,有约100亿年的历史。
是由成千上万颗、甚至几十万颗恒星密集而成的集团,因为呈球对称或接近球型而得名,其半径从10秒差距到75秒差距。
球状星团和疏散星团(也叫银河星团)是银河系中两种主要星团。银河系中约有五百个球状星团,全天最亮的球状星团为半人马座ω(NGC5139),它的密度大的惊人,几百万颗恒星聚集在只有数十光年直径的范围内,它中心部分的恒星彼此相距平均只有0.1光年。而离太阳系最近的恒星在4光年之外。北半天球最亮的球状星团是M13。半人马座ω(NGC5139)和M13两个球状星团,都是由英国天文学家哈雷发现的。
球状星团在银河系中呈球状分布,属晕星族。球状星团和银核一样,是银河系中恒星分布最密集的地方,这里恒星分布的平均密度比太阳附近恒星分布的密度约大50倍,中心密度则大到1000倍左右。
球状星团以偏心率很大的巨大椭圆轨道绕着银心运转,轨道平面与银盘成较大倾角,周期一般在三亿年上下。球状星团的成员星是银河系中形成最早的一批恒星,年龄大约在一百亿年。
在球状星团中发现的变星中主要是天琴座RR变星,其余多半是星族II造父变星,因此一些球状星团的距离可以被较为精确的计算出来。已发现的一些球状星团在银河系的外面,如NGC2419离银心的距离大于大麦哲伦星云离银心的距离,处于星际空间。在一些距离我们较近的河外星系中也发现有球状星团。
成份
球状星团通常由数十万颗的低金属含量的老年恒星组成,这些在球状星团中的恒星与在螺旋星系的球核的恒星相似,但是体积却被局限在仅有数立方秒差距之内。她们之中没有气体和尘埃,因为假设在很早以前就都已经凝聚成为恒星了。
由于球状星团是恒星的高密度区,因此被认为是不利于行星系统发展的地区。行星轨道再恒星密集的区域内,因为其他恒星经过时的摄动,使得行星轨道在动力学上是不稳定的。在杜鹃座 47的核心区域,距离恒星1天文单位的行星,大概只能存在108年(数量级)。 然而,至少已经有一个环绕波霎 (PSR B1620?26)的行星系统在球状星团M4内被发现。
除了几个著名的例外,每个球状星团都有明确的年龄,也就是说,大多数星团中的恒星在恒星演化的阶段中都有相似的年龄,暗示她们几乎都是同时形成的。所有的球状星团看起来都没有活跃的恒星形成的活动,这与球状星团是星系中年老的成员的看法是一致的,而且是第一批形成的恒星。
有一些球状星团,像是在我们的银河系内的半人马座ω和在M31的G 1,有异乎寻常大的质量(数百万太阳质量),成员包含多种星族。这两者可以被认为是矮星系被大星系吞噬的证据,超重球状星团是矮星系残余的核心。有些球状星团(像是M15)有极端大质量的核心,可能是怀有黑洞,虽然摹拟的模型建议集中在中心的中子星、巨型的白矮星、或小型的黑洞都能解释。
金属含量
球状星团通常拥有的是第二星族星,与第一星族星比较,例如太阳,金属的含量是较少的。(在天文学中所称的金属是比氦重的元素,像锂和碳等。)
荷兰天文学家Pieter Oosterhoff注意到球状星团会有两种不同的恒星,目前已经被认知为Oosterhoff 群。其中的第二型是周期稍长的天琴座RR变星。这两群恒星都有微弱的金属元素谱线,但是在第一型(OoI)中的谱线比第二型(OoII)明显一些,因为第一形是"富金属"的,而第二型是"贫金属"的。
在许多星系(特别是大质量的椭圆星系)中都观察到了这两种类型的恒星,而且两型的年龄都一样老(几乎与宇宙同年龄),只有金属含量上的差异。许多理论都尝试解释解释这两个次群的成因,包括含有大量气体的星系剧烈的合并、矮星系的累积、和在一个星系中多个阶段的恒星诞生。在我们的银河系,贫金属星团聚集在银晕中,而富金属星团则在球核中。
在银河系内,贫金属星团被发现呈一直线的分布在银河平面和外围的银晕中,这种结果支持第二型恒星是被从卫星星系中剥离出来的,而不是早先认为原来就存在于银河系中的球状星团系统。这两种星群之间的差异,或许可以用来解释两个星系在形成各自的星团系统时间上的差异。
奇特的成员
球状星团有非常高的恒星密度,因此恒星仳此间相互的接近和碰撞便会经常发生。由于这些遭遇的机会,西些奇特的恒星类型便产生了,像是蓝掉队星、毫秒脉冲星、和低质量X射线双星,在球状星团中都很常见。蓝掉队星是由两颗恒星因遭遇而合并形成的,而可能原本就是双星,结果便是星团中温度比一般恒星高,但是发光度相同,有别于主序星的恒星。
在球状星团M15的核心中有一个约4,000太阳质量的黑洞NASA image.从1970年代开始,天文学家就在球状星团内寻找黑洞。这项任务是艰苦和难以达成的,估计只有哈柏太空望远镜有可能达成,而他也真的确认了第一个的发现。在一个独立的计划中,哈柏太空望远镜对M15球状星团的观测显示在其核心中有一个质量是太阳4,000倍的中等质量黑洞(摹拟提供了可能的目标选择);在仙女座星系的球状星团梅欧II则有一个20,000太阳质量的黑洞。
这是特别令人感兴趣的,因为在其中首度发现了质量介于常规的恒星黑洞和位于星系核心的超重质量黑洞之间的中等质量黑洞。这种中等质量黑洞存在于球状星团中的比例是很高的,一如预期的模式,在超重质量黑洞存在的星系周围被发现。
中间质量黑洞还有许多被怀疑的争议,球状星团中质量密集的这一部份,由于许多质量的离析,被预期会偏离星团的核心;应该像球状星团一样,充斥着白矮星和中子星这些老年的恒星族群。在Holger Baumgardt和合作者的两份论文中指出,即使没有黑洞的存在,在M15 和梅欧II 的质-光比在接近中心时都应该明显的升高。
颜色-星等图
赫罗图(黑罗图)是以大量恒星的样本和她们的绝对星等制作成的色指数图,B?V,是她们在蓝色(B)的星等和视星等(V,黄-绿色)的差值;大的正值表示这颗恒星是表面温度较低的红色星,负值则暗示是表面温度较高的蓝色星。
当邻近太阳的恒星被描绘在赫罗图上时,可以显示出这些恒星的质量、寿命和组成的分布。多数恒星的位置都在一条倾斜的曲线上,所熟知的主序带,越热的星绝对星等就越亮,颜色也越蓝。但是也有一些演化至晚期的恒星会出现在图中,她们的位置已经远离了主序带的曲线。
因为球状星团中所有的恒星到我们的距离都一样远,因此视星等和绝对星等的修正差值都是一样的。我们相信球状星团中的主序星也会像邻近太阳的恒星一样分布在主序带上。(这个假设的正确性可以观察邻近太阳的短周期变星,例如天琴座RR型变星和造父变星,和星团中的相同的变星比较而获得证实。)
经过赫罗图的比对,可以测量出球状星团内主序星的绝对星等,这反过来也可以提供对球状星团的距离估计,因为视星等和绝对星等的差异就是距离模组,可以测量出距离。
当球状星团的赫罗图被描绘出来时,几乎所有的星都明确的落在定义的相对曲线上,与邻近太阳恒星的赫罗图不同的是,星团中的恒星都有相同的起源和年龄,球状星团的曲线形状是同一个时间、相同的材料和成分,只有质量不同的恒星所形成的典型曲线。由于在赫罗图上的每一个位置都对应于不同质量恒星的寿命,曲线的形状就能测量球状星团整体的年龄了。
在球状星团中质量最大的主序星有最高的绝对星等,也会是最早转变朝向巨星阶段演化的恒星。随着年龄的增长,低质量的恒星也将逐渐演化进入巨星阶段,因此球状星团的年龄便可以从正转向巨星变化阶段恒星在赫罗图上的位置来测量了。在赫罗图上形成的"湾曲",会朝向主序带的右方。弯曲处对应的绝对星等是球状星团整体的作用,年龄的范围可以从平行于星等的轴上描绘出来。
另一方面,也可以测量球状星团中温度最低的白矮星,典型的结果是球状星团的年龄约为127亿岁。 这是与年龄仅有数千万年的疏散星团对比而得的。
球状星团的年龄,几乎就是宇宙年龄的上限,这个低限是宇宙论的一个重大限制。在1990年代的早期,天文学家遭遇到球状星团的年龄比宇宙论模型所允许的还要老的窘境。幸而,通过更好的巡天观测,例如柯比(COBE)卫星对宇宙学参数的测量,解决了这个问题,并且利用计算机模式融合了不同的恒星演化模型。
对球状星团演化的研究,也能被用于测量球状星团开始时的气体与尘埃的组成,也就是说,由于重元素的丰度变化可以追踪演变的路径。(天文学中的重元素是指比氦重的元素。)从球状星团的研究得到的数据,可以用在对银河系整体的研究上。
在球状星团中有少数恒星被观察到是蓝掉队星,这些恒星的来源还不是很清楚,但是多数的模型都建议这些恒星是多星系统内质量转移所产生的结果。
半径
天文学家经由标准半径来描述球状星团的形态,他们分别是是核心的半径(rc)、晕半径(rh)和潮汐半径(rt)。整体的亮度时由核心向外稳定的减弱,核心半径是表面光度降为中心一半的核心距离,用于比较的量是晕半径,或是总光度达到整个星团一半区域的半径,通常这个值会比核心半径要大。
要住一的是晕半径所包含的恒星在视线的方向上是包含了在星团外围的恒星,所以理论上也会使用半质量半径(rm)—,由中心志包含星团一半质量的距离。如果半质量半径小于星团半径的一半,这个星团的核心便是高密度的,例如M3,他整体的视直径是18角秒,但是半质量半径只有1.12角秒。
最后的潮汐半径是核心到星团外围受到星系影响大于星团本身影响的距离,在这个距离上,原属于星团的单独恒星会被星系的引力拉扯出去。M3的潮汐半径大约是38″。
球体的椭率 星系 椭率
银河系 0.07±0.04
LMC 0.16±0.05
SMC 0.19±0.06
M31 0.09±0.04
质量隔离和光度
在测量特定球状星团的核心距离与光度曲线的函数时,银河系内多数的球状星团在衣锭的距离内光度都会因距离的增加而稳定的降低,然后光度呈现水平。典型的距离都在距离核心1–2 秒差距之处。然而有20%的球状星团经历了所谓的"核心崩溃"的过程,在这一类型的星团中,光度一直是平稳的增加至核心的区域内。一个有核心崩溃的球状星团例子是M15。
杜鹃座 47 – 是继半人马座ω之后,全银河系中第二亮的球状星团。核心崩溃被认为是球状星团中较重质量的恒星与他较轻的伴星遭遇时发生的状况,结果是较大质量的恒星损失了动能,于是朝向核心掉落。经历一段较长的时间之后,导致大质量的恒星集中在核心的附近。
哈柏太空望远镜被用来蒐集和观察大质量恒星向中心集中的过程和程序。仲的恒星因为减速而群集在拥挤的核心,轻的恒星则因加速而花费较长的时间在外围环绕着。球状星团杜鹃座 47大约有一百万颗的恒星,是在南半球的一个恒星密度最高的球状星团之一,对这个星团进行了一次密集的摄影观测,使得天文学家可以追踪其中的恒星运动,几乎得到了15,000颗恒星精确的运动速度。 在银河系和M31内的球状星团整体的光度可以经由亮度Mv和变量σ2,来塑造高斯曲线。球状星团的光度分布称为球状星团光度函数(GCLF),在银河系,Mv = ?7.20±0.13, σ=1.1±0.1星等。 GCLF也可以最为标准烛光来测量其他星系的距离,只要先假设在其他星系中的球状星团也遵守在银河系中的各项准则。
潮汐遭遇
当球状星团接近大质量物体时,例如星系核心,会与潮汐力交互作用。当大质量物体的重力在拉扯球状星团近端和远端的力量不同时,结果就会造成潮汐力。无论何时,每当星团通过星系的平面时,"潮汐震波"便会发生。
潮汐震波造成的结果是,一连串的恒星会从星团的晕中被扯出,只有星团核心的恒星会留在星团中。这些潮汐作用扯出的恒星可以在星团后面拖曳出好几度长,由恒星组成的星弧。[40] 这些星弧通常会沿着轨道散布在星团的前后,这些尾巴可能累积了大量的星团原始特性,并且形成有相似特征的丛集。[41]
例如球状星团帕罗马 5,才在银河中通过轨道上的近星系点之后不久,一连串的恒星就沿着他的轨道前后方向延伸出去,距离远达13,000光年。[42]潮汐的交互作用从帕罗马 5剥离了大量的质量,当她穿越星系的核心时,近一步的交互作用将把它转变成围绕着银晕的长串恒星链。
潮汐的交互作用增加了球状星团的动能,戏剧性的加大星团的蒸发率和缩小了体积。[27] 潮汐震波不仅剥离了球状星团外围的恒星,增加的蒸发率也加速了核心的崩溃。同样的物理机制也会作用在矮椭球星系,像是人马座矮椭圆星系,就是因为接近银河的核心才会被潮汐力扯裂的。
矮星
矮星(Dwarf star):像太阳一样的小主序星,如果是白矮星,就是像太阳一样的一颗恒星的遗核。褐矮星没有足够的物质进行熔化反应。
原指本身光度较弱的星﹐现专指恒星光谱分类中光度级为V的星﹐即等同于主序星。光谱型为O﹑B﹑A的矮星称为蓝矮星(如织女一﹑天狼星)﹐光谱型为F﹑G的矮星称为黄矮星(如太阳)﹐光谱型为K及更晚的矮星称为红矮星(如南门二乙星)。但白矮星﹑亚矮星﹑“黑矮星”则另有所指﹐并非矮星。物质处在简并态的一类弱光度恒星“简并矮星”也不属矮星之列。“黑矮星”则是理论上估计存在的天体﹐指质量大致为一个太阳质量或更小的恒星最终演化而成的天体﹐它处于冷简并态﹐不再发出辐射能﹔也有人专指质量不够大(小于约0.08太阳质量)﹑已没有核反应能源的星体。
光度最弱的一类星系﹐其绝对星等M 为-8~-16等。有的矮星系是椭圆星系﹐也有的是I型不规则星系。这两种矮星系都是小的﹐成员星通常也不多。质量只有10~10太阳质量。不规则矮星系包含著大量闹行郧猢o并且包含著星族 I的恒星。椭圆矮星系是椭圆星系中质量小的星系。它们与球状星团很类似﹐二者的不同仅仅在于前者直径约为后者的10倍。在本星系群的40个星系中﹐就是20多个是椭圆矮星系﹐可见其数目之多。这种星系光度弱﹐所以在5万秒差距之外是看不到的。
棕矮星
棕矮星(Brown dwarf)是类恒星天体的一种,质量约为5至90个木星之间。与一般恒星不同,棕矮星由质量不足,其核心并不会融合氢原子来发光发热,无法成为主序星。但它们的内部及表面均呈对流状态,不同的化学物质并不会在内部分层存在。现时人们仍在研究棕矮星在过往是否曾经在某位置发生过核聚变,已知的是,质量大于13个木星的棕矮星可融合氘。
棕矮星原先被称为“黑矮星”,代表在宇宙间漂浮的类恒星天体或质量不足以发生核反应的天体。但“黑矮星”一词现时是指一些停止发光,并已死亡的白矮星。
早期的恒星模型指出,一个天体欲成为真恒星,必须拥有80个以上的木星质量,以产生核反应。“棕矮星”的理论最初于1960年代早期提出,指其数量可能比真恒星多,由于未能发光,要寻找也颇为困难。它们会释出红外线,可凭地面的红外线侦测器来侦测,但由提出至证实发现足足用了数十年。
近期的研究则指出,恒星能发光发热除取决于质量外,也包括其内含的化合物。一些棕矮星的质量达到90个木星仍不能点燃内部的氢。还有当一团星云塌缩时,除产生恒星外,也会产生不发光的棕矮星,其质量少于13个木星。
首个棕矮星于1995年得到证实,至今已有百多个。现时普遍认为棕矮星是银河系中数目最多的天体之一,较接近地球的棕矮星位于印第安座的epsilon星,该恒星拥有两颗棕矮星,距离太阳12光年。
白矮星
白矮星(White Dwarf)是一种低光度、高密度、高温度的恒星。因为它的颜色呈白色、体积比较矮小,因此被命名为白矮星。白矮星是一种很特殊的天体,它的体积小、亮度低,但质量大、密度极高。比如天狼星伴星(它是最早被发现的白矮星),体积比地球大不了多少,但质量却和太阳差不多!也就是说,它的密度在1000万吨/立方米左右。
根据白矮星的半径和质量,可以算出它的表面重力等于地球表面的1000万-10亿倍。在这样高的压力下,任何物体都已不复存在,连原子都被压碎了:电子脱离了原子轨道变为自由电子。
白矮星是一种晚期的恒星。根据现代恒星演化理论,白矮星是在红巨星的中心形成的。
当红巨星的外部区域迅速膨胀时,氦核受反作用力却强烈向内收缩,被压缩的物质不断变热,最终内核温度将超过一亿度,于是氦开始聚变成碳。
经过几百万年,氦核燃烧殆尽,现在恒星的结构组成已经不那么简单了:外壳仍然是以氢为主的混合物;而在它下面有一个氦层,氦层内部还埋有一个碳球。核反应过程变得更加复杂,中心附近的温度继续上升,最终使碳转变为其他元素。
与此同时,红巨星外部开始发生不稳定的脉动振荡:恒星半径时而变大,时而又缩小,稳定的主星序恒星变为极不稳定的巨大火球,火球内部的核反应也越来越趋于不稳定,忽而强烈,忽而微弱。此时的恒星内部核心实际上密度已经增大到每立方厘米十吨左右,我们可以说,此时,在红巨星内部,已经诞生了一颗白矮星。
白矮星的密度
我们知道,原子是由原子核和电子组成的,原子的质量绝大部分集中在原子核上,而原子核的体积很小。比如氢原子的半径为一亿分之一厘米,而氢原子核的半径只有十万亿分之一厘米。假如核的大小像一颗玻璃球,则电子轨道将在两公里以外。
而在巨大的压力之下,电子将脱离原子核,成自由电子。这种自由电子气体将尽可能地占据原子核之间的空隙,从而使单位空间内包含的物质也将大大增多,密度大大提高了。形象地说,这时原子核是“沉浸于”电子中。
一般把物质的这种状态叫做“简并态”。简并电子气体压力与白矮星强大的重力平衡,维持着白矮星的稳定。顺便提一下,当白矮星质量进一步增大,简并电子气体压力就有可能抵抗不住自身的引力收缩,白矮星还会坍缩成密度更高的天体:中子星或黑洞。
对单星系统而言,由于没有热核反应来提供能量,白矮星在发出光热的同时,也以同样的速度冷却着。经过一百亿年的漫长岁月,年老的白矮星将渐渐停止辐射而死去。它的躯体变成一个比钻石还硬的巨大晶体——黑矮星而永存。
而对于多星系统,白矮星的演化过程则有可能被改变。
白矮星相关
白矮星属于演化到晚年期的恒星。恒星在演化后期,抛射出大量的物质,经过大量的质量损失后,如果剩下的核的质量小于1.44个太阳质量,这颗恒星便可能演化成为白矮星。对白矮星的形成也有人认为,白矮星的前身可能是行星状星云(是宇宙中由高温气体、少量尘埃等组成的环状或圆盘状的物质,它的中心通常都有一个温度很高的恒星──中心星)的中心星,它的核能源已经基本耗尽,整个星体开始慢慢冷却、晶化,直至最后“死亡”。
白矮星,也称为简并矮星,是由电子简并物质构成的小恒星。它们的密度极高,一颗质量与太阳相当的白矮星体积只有地球一般的大小,微弱的光度则来自过去储存的热能。在太阳附近的区域内已知的恒星中大约有6%是白矮星。这种异常微弱的白矮星大约在1910年就被亨利·诺瑞斯·罗素、艾德华·查尔斯·皮克林和威廉·佛莱明等人注意到[3], p. 1白矮星的名字是威廉·鲁伊登在1922年取的。白矮星被认为是低质量恒星演化阶段的最终产物,在我们所属的星系内97%的恒星都属于这一类。,
中低质量的恒星在渡过生命期的主序星阶段,结束以氢融合反应之后,将在核心进行氦融合,将氦燃烧成碳和氧的3氦过程,并膨胀成为一颗红巨星。如果红巨星没有足够的质量产生能够让碳燃烧的更高温度,碳和氧就会在核心堆积起来。在散发出外面数层的气体成为行星状星云之后,留下来的只有核心的部份,这个残骸最终将成为白矮星。因此,白矮星通常都由碳和氧组成。但也有可能核心的温度可以达到燃烧碳却仍不足以燃烧氖的高温,这时就能形成核心由氧、氖和镁组成的白矮星。同样的,有些由氦组成的白矮星是由联星的质量损失造成的。
白矮星的内部不再有物质进行核融合反应,因此恒星不再有能量产生,也不再由核融合的热来抵抗重力崩溃;它是由极端高密度的物质产生的电子简并压力来支撑。物理学上,对一颗没有自转的白矮星,电子简并压力能够支撑的最大质量是1.4倍太阳质量,也就是钱德拉塞卡极限。许多碳氧白矮星的质量都接近这个极限的质量,通常经由伴星的质量传递,可能经由所知道的碳引爆过程爆炸成为一颗Ia超新星。
白矮星形成时的温度非常高,但是因为没有能量的来源,因此将会逐渐释放它的热量并解逐渐变冷 (温度降低),这意味着它的辐射会从最初的高色温随着时间逐渐减小并且转变成红色。经过漫长的时间,白矮星的温度将冷却到光度不再能被看见,而成为冷的黑矮星。但是,现在的宇宙仍然太年轻 (大约137亿岁),即使是最年老的白矮星依然辐射出数千度K的温度,还不可能有黑矮星的存在 。
白矮星的特征
白矮星具有这样一些特征:
在轨道上环绕著天狼星的白矮星(艺术想像图)
(1)体积小,它的半径接近于行星半径,平均小于10的3次方千米。
(2)光度(恒星每秒钟内辐射的总能量,即恒星发光本领的大小)非常小,是正常恒星平均的10的3次方分之一。
(3)质量小于1.44个太阳质量。
(4)白矮星密度高达1,000,000 g/cm3(地球密度为5.5g/cm3),一颗与地球体积相当的白矮星(比如说天狼星的邻星Sirius B)的表面重力约等于地球表面的18万倍。假如人能到达白矮星表面,那么他休想站起来,因为在它上面的引力特别大,以致人的骨骼早已被自己的体重压碎了。
(5)白矮星的表面温度很高,平均为10的3次方℃。
(6)白矮星的磁场高达10的5次方--10的7次方高斯
目前人们已经观测发现的白矮星有1000多颗。天狼星(Sirius)的伴星是第一颗被人们发现的白矮星,也是所观测到的最亮的白矮星(8等星)。1982年出版的白矮星星表表明,银河系中有488颗白矮星,它们都是离太阳不远的近距天体。根据观测资料统计,大约有3%的恒星是白矮星,但理论分析与推算认为,白矮星应占全部恒星的10%左右。
我们知道,原子是由原子核和电子组成的,原子的质量绝大部分集中在原子核上,而原子核的体积很小。比如氢原子的半径为一亿分之一厘米,而氢原子核的半径只有十万亿分之一厘米。假如核的大小象一颗玻璃球,则电子轨道将在两公里以外。
而在巨大的压力之下,电子将脱离原子核,成自由电子。这种自由电子气体将尽可能地占据原子核之间的空隙,从而使单位空间内包含的物质也将大大增多,密度大大提高了。形象地说,这时原子核是“沉浸于”电子中。
一般把物质的这种状态叫做“简并态”。简并电子气体压力与白矮星强大的重力平衡,维持着白矮星的稳定。顺便提一下,当白矮星质量进一步增大,简并电子气体压力就有可能抵抗不住自身的引力收缩,白矮星还会坍缩成密度更高的天体:中子星或黑洞。
白矮星是恒星演化末期产生的天体。这些恒星不能维持核聚变反应,所以在经过氦(He)闪进化到红巨星阶段之后,他们会将外壳抛出形成行星状星云,而留下一个核聚变产生的的高密度核心,即白矮星。
由于缺乏能量的来源,白矮星会逐步释放热能而发光而冷却。其核心靠电子的斥力对抗重力,其密度可达每立方厘米十吨。电子斥力不足以支持超过1.4倍太阳质量的白矮星,外壳的重力会进一步使恒星塌缩成中子星或者黑洞。这个过程中经常伴随着超新星爆发。
释放能量会造成恒星逐步冷却,表面温度逐渐降低,恒星的颜色也会随之变化。经过数千亿年之后,白矮星会冷却到无法发光,成为黑矮星。但是目前普遍认为宇宙的年龄(150亿年)不足以使任何白矮星演化到这一阶段。
白矮星形成
白矮星是中低质量的恒星的演化路线的终点。在红巨星阶段的末期,恒星的中心会因为温度、压力不足或者核聚变达到铁阶段而停止产生能量(产生比铁还重的元素不能产生能量,而需要吸收能量)。恒星外壳的重力会压缩恒星产生一个高密度的天体。
一个典型的稳定独立白矮星具有大约半个太阳质量,比地球略大。这种密度仅次于中子星和夸克星。如果白矮星的质量超过1.4倍太阳质量,那么原子核之间的电荷斥力不足以对抗重力,电子会被压入原子核而形成中子星。
大部分恒星的演化过程都包含白矮星阶段。由于很多恒星会通过新星或者超新星爆发将外壳抛出,一些质量略大的恒星也可能最终演化成白矮星。
双星或者多星系统中,由于星际物质的交换,恒星的演化过程可能与单独的恒星不同,例如天狼星的伴星就是一颗年老的大约一个太阳质量的白矮星,但是天狼星是一颗大约2.3个太阳质量的主序星。
白矮星螺旋
在大约1,600光年远的一个叫做J0806的非常著名的双星系统里,两个致密的白矮星每321秒绕各自的轨道旋转一周。钱德拉天文台天文学家的X射线波段数据分析反驳了一个已经给人留下深刻印象的观点:这两颗白矮星的短轨道周期处于一种稳定的状态,当他们的螺旋凑的越近,他们的周期越短。即使它们是分开有80,000公里的两个星(地球与月亮的距离是 400,000 公里),它们也注定要合并的。根据这个艺术家般的观点描述,著名的J0806系统螺旋毁灭的原因便是同爱因斯坦相对论中预言的那样:白矮星由于重力波产生的影响而最终丧失它的轨道能量。事实上,J0806可能是我们银河系重力波最明亮的光源之一,可以直接利用未来设立在太空的重力波工具捕获。
这两颗白矮星会很快碰撞合并在一起,如果质量足够大,就会演变成中子星;如果质量不到1.4倍太阳的质量,那么合并成一个“大的”白矮星。
历史上的发现
1892年,Alvan Graham Clark发现了天狼星的伴星。根据对恒星数据的分析,这个伴星的质量约一个太阳质量,表面温度大约25000K,但是其光度大约是天狼星的万分之一,所以根据光度和表面积的关系,推断出其大小与地球相当。这样的密度是地球上的物质达不到的。1917年,Adriaan Van Maanen发现了目前已知离太阳最近的白矮星Van Maanen星。
在二十世纪初由Max Planck等人发展出量子理论之后,Ralph H. Fowler于1926年建立了一个基于费米-狄拉克统计的解释白矮星的密度的理论。
1930年,苏布拉马尼扬·钱德拉塞卡发现了白矮星的质量上限(钱德拉塞卡极限),并因此获得1983年的诺贝尔物理学奖。