池莉烦恼人生在线阅读:高效液相色谱级乙腈的质量评价

来源:百度文库 编辑:偶看新闻 时间:2024/04/27 20:04:17

高效液相色谱级乙腈的质量评价

HPLC 2009-11-01 21:19:45 阅读532 评论4   字号: 订阅

高效液相色谱级乙腈的质量评价

信息来源:液色迷人  摘要: 高效液相色谱(HPLC)分析中,流动相溶剂的纯度和质量对分析结果和仪器本身都有重要影响。溶剂中的各种痕量杂质不仅会造成较高的基线和鬼峰,进而影响定性定量分析结果,而且可能会污染分离柱和堵塞系统,造成仪器出现故障。了解HPLC溶剂规格和相关的测试方法,可以帮助HPLC 用户评价和筛选HPLC溶剂,减少溶剂杂质对应用造成的负面影响。本文介绍了基于紫外(UV)吸收和HPLC梯度确定HPLC级乙腈纯度和质量的两种规范方法及其对HPLC分析的意义,并探讨了这两种方法的实际应用。

  乙腈区别于其他HPLC溶剂的独特性质(中等洗脱能力、强溶解能力、能够得到明确的色谱峰、低粘度、相对于醇类和酯类有较低的UV吸收)[1],使其成为 最常用的有机流动相组分。乙腈一般是(由氨和丙烯)大规模生产丙烯腈的副产物。其中可能含有多种很少量的杂质,例如丙烯腈、α(β)-甲基丙烯腈、顺/反 式丁烯腈、乙醛、丙酮、甲醇、乙基氰化物、丙烯醛、烯丙醇、丙烯酸、恶唑和乙酸[2-4]。经过复杂的纯化过程,痕量的上述杂质可能仍然存在于HPLC级 乙腈中。其中一些杂质不仅会造成较高的基线和鬼峰,进而影响定性定量分析,而且会污染分析柱、堵塞系统,导致仪器出现故障。
  作为美国分析试剂标准测试方法的权威,美国化学学会(ACS)分析试剂委员会在《试剂化学品》(第9版)中明确定义了HPLC级乙腈的技术说明,包括通用 的说明和HPLC的适用说明。通用的说明包括气相色谱(GC)纯度、水、滴定酸或碱、以及挥发残留物。HPLC的适用说明包括UV吸收和HPLC空白梯度 洗脱基线[5]。
  本文详细介绍了乙腈的两种适用于HPLC的规范方法及其对HPLC应用的意义,并通过详尽的实验数据讨论了操作中的注意事项以及影响测试结果的因素。

1 实验

1.1 仪器
  本文中使用了两种HPLC系统,其特定条件介绍如下:Agilent 1100 HPLC系统由脱气机(G1379A)、四元泵(G1311A)、自动进样器(G1315A)和二极管阵列检测器(DAD)(G1315B) (Agilent Technologies, Wilmington, DE)组成,并用该系统获得图1和图2的结果。其他色谱图由Alliance 2695 HPLC系统和2996 光电二极管阵列(PDA)检测器(Waters, Milford, MA)获得。ZORBAX C18柱由Agilent提供;B&J C8柱从Honeywell Burdick & Jackson获得。
      UV光谱使用Cary 4000 UV-VIS 分光光度计(Varian, Palo Alto, CA)。参比池为1 cm石英池,样品池为1 cm或5 cm石英池。 1.2 药品和试剂
  HPLC级乙腈来自Honeywell Burdick & Jackson 及其他HPLC溶剂供应商。高纯水由Milli-Q超纯水系统(Millipore, Bedford, MA)和Honeywell Burdick & Jackson供应。乙酸(AR)由Sigma(St. Louis, MO)提供。

2 结果和讨论

2.1 HPLC级乙腈UV吸收规范的意义
  UV吸收背景对HPLC乙腈的关键性源于两个原因。首先,大部分有机杂质都会产生UV吸收。乙腈的UV吸收越小意味着其中杂质含量越少。第二,HPLC仪器最常用的检测模式就是UV检测。因此乙腈的UV吸收越小,色谱的基线背景越低;从而灵敏度越高,检测限越低。
  图3是来自不同供应商的HPLC级乙腈的UV光谱,尤其是在短波长范围(300~190 nm)并不相同。这可能是由于乙腈中难以去除的杂质因各溶剂供应商使用的纯化技术不同而不同。鉴于使用UV检测器的HPLC分析中大部分分析物在300 nm以下检测,因此大部分溶剂供应商在上述波长范围内设立UV吸收规范。
  2.2 影响UV吸收测量值的因素
  在测试实验中,很多因素会影响UV吸收的测量值:
  (1)光路距离(比色皿长)。在0.2~0.8 AU范围内,吸光率(A)的测量值误差最小,否则吸光率的测量误差会相对大些。如使用1 cm比色皿,即使在250~210 nm的短波长范围内,乙腈的吸光率也远小于0.2 AU,因此可能产生很大的误差。根据比尔定律,溶剂的吸光率和样品的光路距离成正比,因此增加样品池长度会使溶剂吸光率增加,使其值进入0.2~0.8 AU范围内,从而减小测量误差。使用5 cm比色皿,在400~190 nm扫描范围内得到不同乙腈样品的UV光谱(如图4所示)。从图4中曲线可以发现,使用5 cm比色皿可使乙腈在低波长的大部分UV吸光率进入0.2~0.8 AU范围,从而显示出数据的准确度更高。而且,不同乙腈样品的UV吸光率的差别与使用1 cm比色皿时相比更明显。鉴于这一点,Honeywell Burdick & Jackson等一些生产商使用1 cm和5 cm两种比色皿建立UV吸收规范。

  (2)仪器参数。由于乙腈的吸光率非常低,仪器参数的设定要保证最佳的灵敏度和准确度。双光路模式可以克服单光路模式中光源能量随时间变化的缺点,并且可以更方便地扫描UV全波长范围。使用分光光度计的基线校正功能,可以去除由光源、检测器和样品池等引入的仪器变化[6]。由于仪器噪声随着扫描速度的提高 而增大,因此推荐使用最大扫描速度的一半。
  (3)参比物。用于溶剂UV吸收测定的参比物有两种可能。《试剂化学品》(第9版)使用水作为参比;而《中国药典》使用空气作为参比。使用空气作为参比时测定的乙腈UV吸收值低于使用水作为参比时测定的值,而且在400~250 nm波长的范围内通常为负值。这是由于空气中氧和二氧化碳的贡献使其UV吸收强于水。如图5中所示,由于参比不同造成的UV吸收有显著不同,高达 0.03 AU,所以当我们阅读供应商提供的分析报告证书时需要了解究竟是使用水还是使用空气作为参比。

  推荐使用新鲜的HPLC级瓶装水或者实验室超纯水系统制得的超纯水作为参比物。值得注意的是,实验室超纯水系统制得的新鲜水常常含有大量的气泡,这些气泡需要在实验前去除,否则会影响数据的准确度。 
  (4)氮气喷雾。为了延长溶剂的保存时间,一些HPLC溶剂供应商将惰性氮气充入溶剂。作者研究了氮气对乙腈UV吸收的影响(图6)。结果发现经过氮气喷 雾,乙腈在250~200 nm范围内的UV吸收显著降低。200 nm处的吸光率为0.012,是氮气喷射前的四分之一。其原因可能是氮气在乙腈中的溶解度远小于氧气和二氧化碳。氮气喷雾减少了氧气和二氧化碳对乙腈UV 吸收的贡献。(注意:也可能是由于氧气和溶剂形成了电荷传递复合物导致了UV吸收。)

  (5)溶剂的挥发性。由于乙腈是一种挥发性溶剂,如果样品池和参比池在测试过程中是敞开的,那么样品池中的乙腈蒸汽可能会进入样品室或参比池,结果造成吸光率读数偏低。因此,推荐在实验中用聚四氟乙烯(PTFE)盖子将这两个池都盖住。 2.3 HPLC级乙腈空白梯度洗脱规范的意义 
  如果溶剂中的杂质水平低于1 ppm,简单的UV光谱通常检测不到其存在[1]。然而,这些痕量杂质可能在有机相和水相比例较低时在柱上富集并保留,然后当梯度过程中流动相洗脱能力增强时被洗脱下来,从而形成鬼峰[7]。因此,HPLC空白梯度洗脱基线上的鬼峰高低,是评价HPLC级乙腈质量的关键规范方法。它清楚地表明了乙腈中是否 含有影响梯度洗脱模式下HPLC分析的痕量的杂质。
  《试剂化学品》(第9版)明确规定214 nm处HPLC空白梯度洗脱基线的最大峰高应低于5 mAU。具体的测定方法如下:C18柱(250 mm×4.6 mm i.d.,5 μm);梯度:0 min,80% 水(溶剂A),20% 乙腈(溶剂B),保持30 min;在50 min时达到 100% B,保持10 min;流速2 mL/min。样品运行3次,并去掉第1次运行的结果[5]。图7比较了B&J ACS/HPLC和几种国内色谱级乙腈样品的ACS空白梯度洗脱基线。结果表明,一些本地产色谱级乙腈样品在254 nm时会产生高达20 mAU的鬼峰。这说明即使在254 nm处,这些国产试剂也可能在HPLC常规分析中产生干扰。

  在HPLC的一些实际应用中,往往需要在更低波长处使用梯度洗脱模式以实现高灵敏度的HPLC分析,因此对乙腈的HPLC空白梯度洗脱规范提出了更高的要 求。为了满足高灵敏HPLC应用的要求,一些溶剂供应商也生产梯度级HPLC乙腈。这种乙腈不同于用于等度洗脱HPLC分析的乙腈,它们可以满足更严格的 梯度洗脱规范。例如,Honeywell Burdick & Jackson的空白梯度洗脱基线规格为:254 nm时低于1 mAU,215 nm时低于5 mAU。图1中,在215 nm下,不同供应商的梯度级乙腈的梯度洗脱基线不同,说明它们用于低波长梯度洗脱模式痕量HPLC分析的质量不同。 2.4 影响空白梯度洗脱基线测定的因素
  由于操作和HPLC系统本身的复杂性,系统中的任何部分都可能成为梯度洗脱基线鬼峰的来源,因此在实验过程中应十分注意降低HPLC系统和水相的干扰。
  (1)HPLC系统污染和流动相添加剂的影响。梯度洗脱过程中,任何有UV吸收的杂质都可能产生鬼峰。除了HPLC进样系统和色谱柱的污染,样品溶剂和流 动相的不匹配也会产生鬼峰。图8为当100%乙腈样品进入系统中,乙腈和水梯度运行色谱图中开始处可能产生正或负的鬼峰。因此进行空白梯度洗脱基线测定 时,为了去除可能来自进样系统的干扰而不予以进样。测试前色谱柱应彻底洗净,或者使用一根专门用来做这个实验的色谱柱来避免来源于色谱柱的交叉污染。

  HPLC分析的实际应用中,常向流动相中加入一些添加剂来改善分离和峰形。然而,这些添加剂也可能成为梯度洗脱基线鬼峰的来源。图9中可见,水相中加入乙酸会导致梯度洗脱基线中有鬼峰。因此,乙腈空白梯度洗脱基线测定操作中,只用水和乙腈作为流动相而不加添加剂。
  (2)HPLC系统中气泡的影响。溶剂中的气泡经过HPLC系统也可能产生鬼峰(图10)。这种鬼峰和典型的杂质峰不同,它们是鱼翅形:其前边缘很锐,然 后几乎线性下降至基线。在线压力监测系统显示,鬼峰形成时有很快的系统压力降(图11),更进一步证明这些鬼峰的形成是由于系统压力的瞬间快速降低而不是 由于杂质的存在。参考文献[7]和[8]详细解释了气泡如何导致了这种鬼峰的生成。
  因此,当进行空白梯度洗脱测试时,需要确保HPLC系统中的气泡完全除净、脱气机正常工作并且流动相充分脱气,从而保证系统中没有气泡。
  (3)流动相中水的影响。水相也是空白梯度洗脱基线中鬼峰的一个重要来源。实际上,空白基线洗脱基线中的大部分鬼峰来源于水相[9]。在消费者处进行的一 次HPLC梯度洗脱基线操作中发现使用不同品牌的乙腈时,17.5 min处都有一个很高的鬼峰,说明这是由消费者的水净化系统引起的(图2)。许多分析实验室常使用商品化饮用水或蒸馏水作为HPLC分析的流动相。实际 上,水的塑料容器常会促进细菌的生长,容器中的添加剂也可能会溶入水中,从而导致梯度洗脱模式中出现鬼峰。因此,推荐使用由HPLC溶剂供应商提供的商品 化瓶装HPLC级水,或超纯水系统制备的用于HPLC的水。图12表明新鲜的B&J ACS/HPLC水和来自Milli-Q系统的超纯水都能满足高灵敏度HPLC梯度洗脱测试规格。
  但应该注意的是,空气中的污染物也可能进入到瓶装HPLC水中,一旦盖子打开一段时间后可能会长菌。图12显示,开瓶一周的棕色瓶装HPLC水的梯度洗脱 基线严重漂移,并且相比于新鲜HPLC水,其峰的数量和峰高都显著增加。因此,瓶装HPLC级水一旦打开,最好在两天内使用。至于Milli-Q超纯水, 应注意的是超纯水系统中的柱子和UV灯是消耗品,当到达使用寿命时需要更换;否则水中的总有机碳(TOC)可能显著增加,从而在梯度洗脱测试中产生干扰 [9]。

  为避免柱内的流动相“疏水性塌陷”,梯度洗脱中初始流动相组成不使用100%水,而使用较低的有机相/水相比例(根据不同的HPLC溶剂供应商,通常为 10%~30%乙腈)。如果鬼峰是由流动相造成的,峰高会随着初始有机相/水相比例的持续时间而变大。为了进一步确定鬼峰是来自乙腈或水,可以改变初始有机相的比例。如果鬼峰随着初始有机相比例增大而增大,那么其来源应为乙腈;反之则来源于水。图13中,鬼峰高随着平衡时间增加,所以这些鬼峰全部来自于流动相。如果考察不同初始有机相比例的两个梯度洗脱基线,当初始有机相比例从20%增至30%时,48~52 min范围内的鬼峰增多,40~46 min范围内的鬼峰消失。这说明前一个来源是乙腈而后一个是水。
  (4)过滤造成的流动相污染。为了避免流动相中可能存在的颗粒造成HPLC系统堵塞,HPLC仪器供应商通常推荐对流动相进行微过滤。然而,操作不小心或者微过滤装置本身都可能会向流动相中引入杂质。一方面,商品化过滤膜的质量差别很大,并且(尤其是用尼龙或高密度聚乙烯制作的)过滤膜本身可能引入更多颗 粒或含有可被乙腈萃取的物质;另一方面,一般的实验室条件下,很难保证过滤过程中过滤装置的玻璃器皿部分完全没有颗粒。使用0.45 μm尼龙支撑的的疏水PTFE膜过滤乙腈,空白梯度洗脱基线中45 min处会出现高达50 mAU的鬼峰(图14)。尽管污染的来源还需要进一步确认,这仍可说明实验室中微过滤操作引起污染的风险很高。因此,推荐在HPLC梯度洗脱评价测试中直 接使用由生产商提供的原装瓶里的乙腈,而不增加其他处理操作。

3 结论

  UV吸收和HPLC空白梯度洗脱基线是HPLC级乙腈的两个关键规格。由于UV区域内乙腈的吸收很低,推荐使用双光路模式、基线校正和适当增加比色皿长度来获得更加准确的结果。另外,参比物质、溶剂是否经过氮气喷射以及溶剂本身的挥发性也可能影响测试结果。相比于UV吸收,HPLC空白梯度洗脱基线评价可 以为应用于HPLC梯度的乙腈质量提供更加精确和实用的评价。测试中需要考虑多种实际方面来确保获得准确可靠的测试结果;来自于HPLC系统、流动相添加 剂和水相的污染,以及附加的过滤操作都需要避免;系统中的气泡也要除净。